Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}+2x-4=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
2 санының квадратын шығарыңыз.
x=\frac{-2±\sqrt{4+16}}{2}
-4 санын -4 санына көбейтіңіз.
x=\frac{-2±\sqrt{20}}{2}
4 санын 16 санына қосу.
x=\frac{-2±2\sqrt{5}}{2}
20 санының квадраттық түбірін шығарыңыз.
x=\frac{2\sqrt{5}-2}{2}
Енді ± плюс болған кездегі x=\frac{-2±2\sqrt{5}}{2} теңдеуін шешіңіз. -2 санын 2\sqrt{5} санына қосу.
x=\sqrt{5}-1
-2+2\sqrt{5} санын 2 санына бөліңіз.
x=\frac{-2\sqrt{5}-2}{2}
Енді ± минус болған кездегі x=\frac{-2±2\sqrt{5}}{2} теңдеуін шешіңіз. 2\sqrt{5} мәнінен -2 мәнін алу.
x=-\sqrt{5}-1
-2-2\sqrt{5} санын 2 санына бөліңіз.
x^{2}+2x-4=\left(x-\left(\sqrt{5}-1\right)\right)\left(x-\left(-\sqrt{5}-1\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -1+\sqrt{5} санын, ал x_{2} мәнінің орнына -1-\sqrt{5} санын қойыңыз.