Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

p+q=6 pq=1\times 9=9
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек a^{2}+pa+qa+9 ретінде қайта жазылуы керек. p және q мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,9 3,3
pq оң болғандықтан, p және q белгілері бірдей болады. p+q оң болғандықтан, p және q мәндері оң болады. Көбейтіндісі 9 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1+9=10 3+3=6
Әр жұптың қосындысын есептеңіз.
p=3 q=3
Шешім — бұл 6 қосындысын беретін жұп.
\left(a^{2}+3a\right)+\left(3a+9\right)
a^{2}+6a+9 мәнін \left(a^{2}+3a\right)+\left(3a+9\right) ретінде қайта жазыңыз.
a\left(a+3\right)+3\left(a+3\right)
Бірінші топтағы a ортақ көбейткішін және екінші топтағы 3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(a+3\right)\left(a+3\right)
Үлестіру сипаты арқылы a+3 ортақ көбейткішін жақша сыртына шығарыңыз.
\left(a+3\right)^{2}
Қос мүшелі шаршы ретінде қайта белгілеңіз.
factor(a^{2}+6a+9)
Үшмүшеде ортақ көбейткішке көбейтілуі мүмкін үшмүше квадратының формуласы бар. Үшмүше квадраттардың көбейткіштерін бас және соңғы мүшелерінің квадрат түбірлерін табу арқылы жіктеуге болады.
\sqrt{9}=3
Соңғы мүшенің квадрат түбірін табыңыз, 9.
\left(a+3\right)^{2}
Үшмүше квадраты қосмүше квадратына тең, яғни, үшмүше квадратының ортаңғы мүше белгісімен анықталған белгісі бар бас және соңғы мүшелердің квадрат түбірлерінің қосындысы немесе айырмасы.
a^{2}+6a+9=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
a=\frac{-6±\sqrt{6^{2}-4\times 9}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
a=\frac{-6±\sqrt{36-4\times 9}}{2}
6 санының квадратын шығарыңыз.
a=\frac{-6±\sqrt{36-36}}{2}
-4 санын 9 санына көбейтіңіз.
a=\frac{-6±\sqrt{0}}{2}
36 санын -36 санына қосу.
a=\frac{-6±0}{2}
0 санының квадраттық түбірін шығарыңыз.
a^{2}+6a+9=\left(a-\left(-3\right)\right)\left(a-\left(-3\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -3 санын, ал x_{2} мәнінің орнына -3 санын қойыңыз.
a^{2}+6a+9=\left(a+3\right)\left(a+3\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.