Есептеу
\frac{79614}{2093}\approx 38.038222647
Көбейткіштерге жіктеу
\frac{2 \cdot 3 ^ {2} \cdot 4423}{7 \cdot 13 \cdot 23} = 38\frac{80}{2093} = 38.0382226469183
Ортақ пайдалану
Алмасу буферіне көшірілген
\frac{104}{13}+\frac{120}{13}+\frac{150}{23}+\frac{100}{7}
"8" санын "\frac{104}{13}" түріндегі бөлшекке түрлендіру.
\frac{104+120}{13}+\frac{150}{23}+\frac{100}{7}
\frac{104}{13} және \frac{120}{13} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын қосу арқылы қосыңыз.
\frac{224}{13}+\frac{150}{23}+\frac{100}{7}
224 мәнін алу үшін, 104 және 120 мәндерін қосыңыз.
\frac{5152}{299}+\frac{1950}{299}+\frac{100}{7}
13 және 23 сандарының ең кіші жалпы бөлінгіш саны — 299. \frac{224}{13} және \frac{150}{23} сандарын 299 бөлгіші бар жай бөлшектерге түрлендіріңіз.
\frac{5152+1950}{299}+\frac{100}{7}
\frac{5152}{299} және \frac{1950}{299} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын қосу арқылы қосыңыз.
\frac{7102}{299}+\frac{100}{7}
7102 мәнін алу үшін, 5152 және 1950 мәндерін қосыңыз.
\frac{49714}{2093}+\frac{29900}{2093}
299 және 7 сандарының ең кіші жалпы бөлінгіш саны — 2093. \frac{7102}{299} және \frac{100}{7} сандарын 2093 бөлгіші бар жай бөлшектерге түрлендіріңіз.
\frac{49714+29900}{2093}
\frac{49714}{2093} және \frac{29900}{2093} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын қосу арқылы қосыңыз.
\frac{79614}{2093}
79614 мәнін алу үшін, 49714 және 29900 мәндерін қосыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}