Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

6x^{2}+5x-6=0
Екі жағынан да 6 мәнін қысқартыңыз.
a+b=5 ab=6\left(-6\right)=-36
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы 6x^{2}+ax+bx-6 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,36 -2,18 -3,12 -4,9 -6,6
ab теріс болғандықтан, a және b белгілері теріс болады. a+b мәні оң болғандықтан, оң санның абсолютті мәні теріс санға қарағанда үлкенірек болады. Көбейтіндісі -36 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Әр жұптың қосындысын есептеңіз.
a=-4 b=9
Шешім — бұл 5 қосындысын беретін жұп.
\left(6x^{2}-4x\right)+\left(9x-6\right)
6x^{2}+5x-6 мәнін \left(6x^{2}-4x\right)+\left(9x-6\right) ретінде қайта жазыңыз.
2x\left(3x-2\right)+3\left(3x-2\right)
Бірінші топтағы 2x ортақ көбейткішін және екінші топтағы 3 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(3x-2\right)\left(2x+3\right)
Үлестіру сипаты арқылы 3x-2 ортақ көбейткішін жақша сыртына шығарыңыз.
x=\frac{2}{3} x=-\frac{3}{2}
Теңдеулердің шешімін табу үшін, 3x-2=0 және 2x+3=0 теңдіктерін шешіңіз.
6x^{2}+5x=6
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
6x^{2}+5x-6=6-6
Теңдеудің екі жағынан 6 санын алып тастаңыз.
6x^{2}+5x-6=0
6 санынан осы санның өзін алып тастаған кезде 0 қалады.
x=\frac{-5±\sqrt{5^{2}-4\times 6\left(-6\right)}}{2\times 6}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 6 санын a мәніне, 5 санын b мәніне және -6 санын c мәніне ауыстырыңыз.
x=\frac{-5±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
5 санының квадратын шығарыңыз.
x=\frac{-5±\sqrt{25-24\left(-6\right)}}{2\times 6}
-4 санын 6 санына көбейтіңіз.
x=\frac{-5±\sqrt{25+144}}{2\times 6}
-24 санын -6 санына көбейтіңіз.
x=\frac{-5±\sqrt{169}}{2\times 6}
25 санын 144 санына қосу.
x=\frac{-5±13}{2\times 6}
169 санының квадраттық түбірін шығарыңыз.
x=\frac{-5±13}{12}
2 санын 6 санына көбейтіңіз.
x=\frac{8}{12}
Енді ± плюс болған кездегі x=\frac{-5±13}{12} теңдеуін шешіңіз. -5 санын 13 санына қосу.
x=\frac{2}{3}
4 мәнін шегеру және алу арқылы \frac{8}{12} үлесін ең аз мәнге азайтыңыз.
x=-\frac{18}{12}
Енді ± минус болған кездегі x=\frac{-5±13}{12} теңдеуін шешіңіз. 13 мәнінен -5 мәнін алу.
x=-\frac{3}{2}
6 мәнін шегеру және алу арқылы \frac{-18}{12} үлесін ең аз мәнге азайтыңыз.
x=\frac{2}{3} x=-\frac{3}{2}
Теңдеу енді шешілді.
6x^{2}+5x=6
Осыған ұқсас квадрат теңдеулерді толық квадратқа дейін толтыру арқылы шешуге болады. Толық квадратқа дейін толтыру үшін, теңдеуді алдымен x^{2}+bx=c формуласына қою қажет.
\frac{6x^{2}+5x}{6}=\frac{6}{6}
Екі жағын да 6 санына бөліңіз.
x^{2}+\frac{5}{6}x=\frac{6}{6}
6 санына бөлген кезде 6 санына көбейту әрекетінің күшін жояды.
x^{2}+\frac{5}{6}x=1
6 санын 6 санына бөліңіз.
x^{2}+\frac{5}{6}x+\left(\frac{5}{12}\right)^{2}=1+\left(\frac{5}{12}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын \frac{5}{6} санын 2 мәніне бөлсеңіз, \frac{5}{12} саны шығады. Содан соң, теңдеудің екі жағына \frac{5}{12} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}+\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы \frac{5}{12} бөлшегінің квадратын табыңыз.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
1 санын \frac{25}{144} санына қосу.
\left(x+\frac{5}{12}\right)^{2}=\frac{169}{144}
x^{2}+\frac{5}{6}x+\frac{25}{144} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x+\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x+\frac{5}{12}=\frac{13}{12} x+\frac{5}{12}=-\frac{13}{12}
Қысқартыңыз.
x=\frac{2}{3} x=-\frac{3}{2}
Теңдеудің екі жағынан \frac{5}{12} санын алып тастаңыз.