Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

3x^{2}-3x=2-2x
3x мәнін x-1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-3x-2=-2x
Екі жағынан да 2 мәнін қысқартыңыз.
3x^{2}-3x-2+2x=0
Екі жағына 2x қосу.
3x^{2}-x-2=0
-3x және 2x мәндерін қоссаңыз, -x мәні шығады.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 3 санын a мәніне, -1 санын b мәніне және -2 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-2\right)}}{2\times 3}
-4 санын 3 санына көбейтіңіз.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 3}
-12 санын -2 санына көбейтіңіз.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 3}
1 санын 24 санына қосу.
x=\frac{-\left(-1\right)±5}{2\times 3}
25 санының квадраттық түбірін шығарыңыз.
x=\frac{1±5}{2\times 3}
-1 санына қарама-қарсы сан 1 мәніне тең.
x=\frac{1±5}{6}
2 санын 3 санына көбейтіңіз.
x=\frac{6}{6}
Енді ± плюс болған кездегі x=\frac{1±5}{6} теңдеуін шешіңіз. 1 санын 5 санына қосу.
x=1
6 санын 6 санына бөліңіз.
x=-\frac{4}{6}
Енді ± минус болған кездегі x=\frac{1±5}{6} теңдеуін шешіңіз. 5 мәнінен 1 мәнін алу.
x=-\frac{2}{3}
2 мәнін шегеру және алу арқылы \frac{-4}{6} үлесін ең аз мәнге азайтыңыз.
x=1 x=-\frac{2}{3}
Теңдеу енді шешілді.
3x^{2}-3x=2-2x
3x мәнін x-1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
3x^{2}-3x+2x=2
Екі жағына 2x қосу.
3x^{2}-x=2
-3x және 2x мәндерін қоссаңыз, -x мәні шығады.
\frac{3x^{2}-x}{3}=\frac{2}{3}
Екі жағын да 3 санына бөліңіз.
x^{2}-\frac{1}{3}x=\frac{2}{3}
3 санына бөлген кезде 3 санына көбейту әрекетінің күшін жояды.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -\frac{1}{3} санын 2 мәніне бөлсеңіз, -\frac{1}{6} саны шығады. Содан соң, теңдеудің екі жағына -\frac{1}{6} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{1}{6} бөлшегінің квадратын табыңыз.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{2}{3} бөлшегіне \frac{1}{36} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
Қысқартыңыз.
x=1 x=-\frac{2}{3}
Теңдеудің екі жағына да \frac{1}{6} санын қосыңыз.