Есептеу
-\frac{3x^{2}}{2}+\frac{19x}{2}-12
Жаю
-\frac{3x^{2}}{2}+\frac{19x}{2}-12
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
\frac{2}{2}+2\left(x-2\right)-\frac{3\left(x-2\right)\left(x-3\right)}{2}
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. 1 санын \frac{2}{2} санына көбейтіңіз.
\frac{2-3\left(x-2\right)\left(x-3\right)}{2}+2\left(x-2\right)
\frac{2}{2} және \frac{3\left(x-2\right)\left(x-3\right)}{2} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\frac{2-3x^{2}+9x+6x-18}{2}+2\left(x-2\right)
2-3\left(x-2\right)\left(x-3\right) өрнегінде көбейту операциясын орындаңыз.
\frac{-16-3x^{2}+15x}{2}+2\left(x-2\right)
Ұқсас мүшелерді 2-3x^{2}+9x+6x-18 өрнегіне біріктіріңіз.
1+2x-4-\frac{3\left(x-2\right)\left(x-3\right)}{2}
2 мәнін x-2 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-3+2x-\frac{3\left(x-2\right)\left(x-3\right)}{2}
-3 мәнін алу үшін, 1 мәнінен 4 мәнін алып тастаңыз.
-3+2x-\frac{\left(3x-6\right)\left(x-3\right)}{2}
3 мәнін x-2 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-3+2x-\frac{3x^{2}-9x-6x+18}{2}
Әрбір 3x-6 мүшесін әрбір x-3 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
-3+2x-\frac{3x^{2}-15x+18}{2}
-9x және -6x мәндерін қоссаңыз, -15x мәні шығады.
\frac{2\left(-3+2x\right)}{2}-\frac{3x^{2}-15x+18}{2}
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. -3+2x санын \frac{2}{2} санына көбейтіңіз.
\frac{2\left(-3+2x\right)-\left(3x^{2}-15x+18\right)}{2}
\frac{2\left(-3+2x\right)}{2} және \frac{3x^{2}-15x+18}{2} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\frac{-6+4x-3x^{2}+15x-18}{2}
2\left(-3+2x\right)-\left(3x^{2}-15x+18\right) өрнегінде көбейту операциясын орындаңыз.
\frac{-24+19x-3x^{2}}{2}
Ұқсас мүшелерді -6+4x-3x^{2}+15x-18 өрнегіне біріктіріңіз.
\frac{2}{2}+2\left(x-2\right)-\frac{3\left(x-2\right)\left(x-3\right)}{2}
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. 1 санын \frac{2}{2} санына көбейтіңіз.
\frac{2-3\left(x-2\right)\left(x-3\right)}{2}+2\left(x-2\right)
\frac{2}{2} және \frac{3\left(x-2\right)\left(x-3\right)}{2} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\frac{2-3x^{2}+9x+6x-18}{2}+2\left(x-2\right)
2-3\left(x-2\right)\left(x-3\right) өрнегінде көбейту операциясын орындаңыз.
\frac{-16-3x^{2}+15x}{2}+2\left(x-2\right)
Ұқсас мүшелерді 2-3x^{2}+9x+6x-18 өрнегіне біріктіріңіз.
1+2x-4-\frac{3\left(x-2\right)\left(x-3\right)}{2}
2 мәнін x-2 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-3+2x-\frac{3\left(x-2\right)\left(x-3\right)}{2}
-3 мәнін алу үшін, 1 мәнінен 4 мәнін алып тастаңыз.
-3+2x-\frac{\left(3x-6\right)\left(x-3\right)}{2}
3 мәнін x-2 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
-3+2x-\frac{3x^{2}-9x-6x+18}{2}
Әрбір 3x-6 мүшесін әрбір x-3 мүшесіне көбейту арқылы дистрибутивтілік сипатын қолданыңыз.
-3+2x-\frac{3x^{2}-15x+18}{2}
-9x және -6x мәндерін қоссаңыз, -15x мәні шығады.
\frac{2\left(-3+2x\right)}{2}-\frac{3x^{2}-15x+18}{2}
Өрнектерді қосу немесе алу үшін, оларды бір бөлімге келтіріңіз. -3+2x санын \frac{2}{2} санына көбейтіңіз.
\frac{2\left(-3+2x\right)-\left(3x^{2}-15x+18\right)}{2}
\frac{2\left(-3+2x\right)}{2} және \frac{3x^{2}-15x+18}{2} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
\frac{-6+4x-3x^{2}+15x-18}{2}
2\left(-3+2x\right)-\left(3x^{2}-15x+18\right) өрнегінде көбейту операциясын орындаңыз.
\frac{-24+19x-3x^{2}}{2}
Ұқсас мүшелерді -6+4x-3x^{2}+15x-18 өрнегіне біріктіріңіз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}