x мәнін табыңыз
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x=\frac{1}{2}=0.5
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
0=4\left(x^{2}-2x+1\right)-1
\left(x-1\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
0=4x^{2}-8x+4-1
4 мәнін x^{2}-2x+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
0=4x^{2}-8x+3
3 мәнін алу үшін, 4 мәнінен 1 мәнін алып тастаңыз.
4x^{2}-8x+3=0
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
a+b=-8 ab=4\times 3=12
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы 4x^{2}+ax+bx+3 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-12 -2,-6 -3,-4
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 12 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-12=-13 -2-6=-8 -3-4=-7
Әр жұптың қосындысын есептеңіз.
a=-6 b=-2
Шешім — бұл -8 қосындысын беретін жұп.
\left(4x^{2}-6x\right)+\left(-2x+3\right)
4x^{2}-8x+3 мәнін \left(4x^{2}-6x\right)+\left(-2x+3\right) ретінде қайта жазыңыз.
2x\left(2x-3\right)-\left(2x-3\right)
Бірінші топтағы 2x ортақ көбейткішін және екінші топтағы -1 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(2x-3\right)\left(2x-1\right)
Үлестіру сипаты арқылы 2x-3 ортақ көбейткішін жақша сыртына шығарыңыз.
x=\frac{3}{2} x=\frac{1}{2}
Теңдеулердің шешімін табу үшін, 2x-3=0 және 2x-1=0 теңдіктерін шешіңіз.
0=4\left(x^{2}-2x+1\right)-1
\left(x-1\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
0=4x^{2}-8x+4-1
4 мәнін x^{2}-2x+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
0=4x^{2}-8x+3
3 мәнін алу үшін, 4 мәнінен 1 мәнін алып тастаңыз.
4x^{2}-8x+3=0
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 3}}{2\times 4}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 4 санын a мәніне, -8 санын b мәніне және 3 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 3}}{2\times 4}
-8 санының квадратын шығарыңыз.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 3}}{2\times 4}
-4 санын 4 санына көбейтіңіз.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 4}
-16 санын 3 санына көбейтіңіз.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 4}
64 санын -48 санына қосу.
x=\frac{-\left(-8\right)±4}{2\times 4}
16 санының квадраттық түбірін шығарыңыз.
x=\frac{8±4}{2\times 4}
-8 санына қарама-қарсы сан 8 мәніне тең.
x=\frac{8±4}{8}
2 санын 4 санына көбейтіңіз.
x=\frac{12}{8}
Енді ± плюс болған кездегі x=\frac{8±4}{8} теңдеуін шешіңіз. 8 санын 4 санына қосу.
x=\frac{3}{2}
4 мәнін шегеру және алу арқылы \frac{12}{8} үлесін ең аз мәнге азайтыңыз.
x=\frac{4}{8}
Енді ± минус болған кездегі x=\frac{8±4}{8} теңдеуін шешіңіз. 4 мәнінен 8 мәнін алу.
x=\frac{1}{2}
4 мәнін шегеру және алу арқылы \frac{4}{8} үлесін ең аз мәнге азайтыңыз.
x=\frac{3}{2} x=\frac{1}{2}
Теңдеу енді шешілді.
0=4\left(x^{2}-2x+1\right)-1
\left(x-1\right)^{2} формуласын жіктеу үшін \left(a-b\right)^{2}=a^{2}-2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
0=4x^{2}-8x+4-1
4 мәнін x^{2}-2x+1 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
0=4x^{2}-8x+3
3 мәнін алу үшін, 4 мәнінен 1 мәнін алып тастаңыз.
4x^{2}-8x+3=0
Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
4x^{2}-8x=-3
Екі жағынан да 3 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
\frac{4x^{2}-8x}{4}=-\frac{3}{4}
Екі жағын да 4 санына бөліңіз.
x^{2}+\left(-\frac{8}{4}\right)x=-\frac{3}{4}
4 санына бөлген кезде 4 санына көбейту әрекетінің күшін жояды.
x^{2}-2x=-\frac{3}{4}
-8 санын 4 санына бөліңіз.
x^{2}-2x+1=-\frac{3}{4}+1
x бос мүшесінің коэффициенті болып табылатын -2 санын 2 мәніне бөлсеңіз, -1 саны шығады. Содан соң, теңдеудің екі жағына -1 квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-2x+1=\frac{1}{4}
-\frac{3}{4} санын 1 санына қосу.
\left(x-1\right)^{2}=\frac{1}{4}
x^{2}-2x+1 көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{1}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-1=\frac{1}{2} x-1=-\frac{1}{2}
Қысқартыңыз.
x=\frac{3}{2} x=\frac{1}{2}
Теңдеудің екі жағына да 1 санын қосыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}