Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз (complex solution)
Tick mark Image
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{3}+x^{2}+x-14=0
Екі жағынан да 14 мәнін қысқартыңыз.
±14,±7,±2,±1
Рационал түбір теоремасы бойынша көпмүшедегі барлық рационал түбірлер \frac{p}{q} формасында беріледі, мұндағы p өрнегі -14 бос мүшесін, ал q өрнегі 1 бас коэффициентін бөледі. Барлық үміткерлер тізімі \frac{p}{q}.
x=2
Модуль бойынша ең кіші мәннен бастап, барлық бүтін санды мәндерді қолданып, осындай бір түбірді табыңыз. Егер бүтін санды түбірлер табылмаса, бөлшектік мәндерді қолданып көріңіз.
x^{2}+3x+7=0
Безу теоремасы бойынша x-k мәні әр k түбірі үшін көпмүше коэффициенті болып табылады. x^{2}+3x+7 нәтижесін алу үшін, x^{3}+x^{2}+x-14 мәнін x-2 мәніне бөліңіз. Нәтижесі 0 мәніне тең болатын теңдеуді шешіңіз.
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 7}}{2}
ax^{2}+bx+c=0 үлгісіндегі барлық теңдеулерді квадраттық формула арқылы шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формуладағы 1 мәнін a мәніне, 3 мәнін b мәніне және 7 мәнін c мәніне ауыстырыңыз.
x=\frac{-3±\sqrt{-19}}{2}
Есептеңіз.
x=\frac{-\sqrt{19}i-3}{2} x=\frac{-3+\sqrt{19}i}{2}
± мәні плюс, ал ± мәні минус болған кездегі "x^{2}+3x+7=0" теңдеуін шешіңіз.
x=2 x=\frac{-\sqrt{19}i-3}{2} x=\frac{-3+\sqrt{19}i}{2}
Барлық табылған шешімдердің тізімі.
x^{3}+x^{2}+x-14=0
Екі жағынан да 14 мәнін қысқартыңыз.
±14,±7,±2,±1
Рационал түбір теоремасы бойынша көпмүшедегі барлық рационал түбірлер \frac{p}{q} формасында беріледі, мұндағы p өрнегі -14 бос мүшесін, ал q өрнегі 1 бас коэффициентін бөледі. Барлық үміткерлер тізімі \frac{p}{q}.
x=2
Модуль бойынша ең кіші мәннен бастап, барлық бүтін санды мәндерді қолданып, осындай бір түбірді табыңыз. Егер бүтін санды түбірлер табылмаса, бөлшектік мәндерді қолданып көріңіз.
x^{2}+3x+7=0
Безу теоремасы бойынша x-k мәні әр k түбірі үшін көпмүше коэффициенті болып табылады. x^{2}+3x+7 нәтижесін алу үшін, x^{3}+x^{2}+x-14 мәнін x-2 мәніне бөліңіз. Нәтижесі 0 мәніне тең болатын теңдеуді шешіңіз.
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 7}}{2}
ax^{2}+bx+c=0 үлгісіндегі барлық теңдеулерді квадраттық формула арқылы шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формуладағы 1 мәнін a мәніне, 3 мәнін b мәніне және 7 мәнін c мәніне ауыстырыңыз.
x=\frac{-3±\sqrt{-19}}{2}
Есептеңіз.
x\in \emptyset
Теріс санның квадраттық түбірі нақты өрісте анықталмағандықтан, шешімдер жоқ.
x=2
Барлық табылған шешімдердің тізімі.