Негізгі мазмұнды өткізіп жіберу
x мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x^{2}-3x=2x-6
2 мәнін x-3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
x^{2}-3x-2x=-6
Екі жағынан да 2x мәнін қысқартыңыз.
x^{2}-5x=-6
-3x және -2x мәндерін қоссаңыз, -5x мәні шығады.
x^{2}-5x+6=0
Екі жағына 6 қосу.
a+b=-5 ab=6
Теңдеуді шешу үшін x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) формуласын қолданып, x^{2}-5x+6 мәнін көбейткіштерге жіктеңіз. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-6 -2,-3
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-6=-7 -2-3=-5
Әр жұптың қосындысын есептеңіз.
a=-3 b=-2
Шешім — бұл -5 қосындысын беретін жұп.
\left(x-3\right)\left(x-2\right)
Алынған мәндерді пайдаланып, көбейткішке жіктелген \left(x+a\right)\left(x+b\right) өрнегін қайта жазыңыз.
x=3 x=2
Теңдеулердің шешімін табу үшін, x-3=0 және x-2=0 теңдіктерін шешіңіз.
x^{2}-3x=2x-6
2 мәнін x-3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
x^{2}-3x-2x=-6
Екі жағынан да 2x мәнін қысқартыңыз.
x^{2}-5x=-6
-3x және -2x мәндерін қоссаңыз, -5x мәні шығады.
x^{2}-5x+6=0
Екі жағына 6 қосу.
a+b=-5 ab=1\times 6=6
Теңдеуді шешу үшін, сол жағын топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, сол жағы x^{2}+ax+bx+6 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
-1,-6 -2,-3
ab оң болғандықтан, a және b белгілері бірдей болады. a+b теріс болғандықтан, a және b мәндері теріс болады. Көбейтіндісі 6 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
-1-6=-7 -2-3=-5
Әр жұптың қосындысын есептеңіз.
a=-3 b=-2
Шешім — бұл -5 қосындысын беретін жұп.
\left(x^{2}-3x\right)+\left(-2x+6\right)
x^{2}-5x+6 мәнін \left(x^{2}-3x\right)+\left(-2x+6\right) ретінде қайта жазыңыз.
x\left(x-3\right)-2\left(x-3\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы -2 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x-3\right)\left(x-2\right)
Үлестіру сипаты арқылы x-3 ортақ көбейткішін жақша сыртына шығарыңыз.
x=3 x=2
Теңдеулердің шешімін табу үшін, x-3=0 және x-2=0 теңдіктерін шешіңіз.
x^{2}-3x=2x-6
2 мәнін x-3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
x^{2}-3x-2x=-6
Екі жағынан да 2x мәнін қысқартыңыз.
x^{2}-5x=-6
-3x және -2x мәндерін қоссаңыз, -5x мәні шығады.
x^{2}-5x+6=0
Екі жағына 6 қосу.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2}
Бұл теңдеу стандартты формулада берілген: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} квадрат теңдеуінде 1 санын a мәніне, -5 санын b мәніне және 6 санын c мәніне ауыстырыңыз.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2}
-5 санының квадратын шығарыңыз.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2}
-4 санын 6 санына көбейтіңіз.
x=\frac{-\left(-5\right)±\sqrt{1}}{2}
25 санын -24 санына қосу.
x=\frac{-\left(-5\right)±1}{2}
1 санының квадраттық түбірін шығарыңыз.
x=\frac{5±1}{2}
-5 санына қарама-қарсы сан 5 мәніне тең.
x=\frac{6}{2}
Енді ± плюс болған кездегі x=\frac{5±1}{2} теңдеуін шешіңіз. 5 санын 1 санына қосу.
x=3
6 санын 2 санына бөліңіз.
x=\frac{4}{2}
Енді ± минус болған кездегі x=\frac{5±1}{2} теңдеуін шешіңіз. 1 мәнінен 5 мәнін алу.
x=2
4 санын 2 санына бөліңіз.
x=3 x=2
Теңдеу енді шешілді.
x^{2}-3x=2x-6
2 мәнін x-3 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
x^{2}-3x-2x=-6
Екі жағынан да 2x мәнін қысқартыңыз.
x^{2}-5x=-6
-3x және -2x мәндерін қоссаңыз, -5x мәні шығады.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
x бос мүшесінің коэффициенті болып табылатын -5 санын 2 мәніне бөлсеңіз, -\frac{5}{2} саны шығады. Содан соң, теңдеудің екі жағына -\frac{5}{2} квадратын қосыңыз. Бұл қадам теңдеудің сол жағының толық квадратын шығарады.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
Бөлшектің алымы мен бөлімінің квадратын шығару арқылы -\frac{5}{2} бөлшегінің квадратын табыңыз.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
-6 санын \frac{25}{4} санына қосу.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
x^{2}-5x+\frac{25}{4} көбейткіштерге жіктеу. Әдетте, x^{2}+bx+c толық квадрат болса, оны әрдайым \left(x+\frac{b}{2}\right)^{2} түрінде көбейткіштерге жіктеуге болады.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Теңдеудің екі жағының квадрат түбірін шығарыңыз.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
Қысқартыңыз.
x=3 x=2
Теңдеудің екі жағына да \frac{5}{2} санын қосыңыз.