Негізгі мазмұнды өткізіп жіберу
Көбейткіштерге жіктеу
Tick mark Image
Есептеу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

a+b=7 ab=1\times 10=10
Өрнекті топтастыру арқылы көбейткіштерге жіктеңіз. Алдымен, өрнек x^{2}+ax+bx+10 ретінде қайта жазылуы керек. a және b мәндерін табу үшін, жүйені шешу әрекетіне реттеңіз.
1,10 2,5
ab оң болғандықтан, a және b белгілері бірдей болады. a+b оң болғандықтан, a және b мәндері оң болады. Көбейтіндісі 10 мәнін беретін барлық бүтін жұп сандарды тізімдеңіз.
1+10=11 2+5=7
Әр жұптың қосындысын есептеңіз.
a=2 b=5
Шешім — бұл 7 қосындысын беретін жұп.
\left(x^{2}+2x\right)+\left(5x+10\right)
x^{2}+7x+10 мәнін \left(x^{2}+2x\right)+\left(5x+10\right) ретінде қайта жазыңыз.
x\left(x+2\right)+5\left(x+2\right)
Бірінші топтағы x ортақ көбейткішін және екінші топтағы 5 ортақ көбейткішін жақшаның сыртына шығарыңыз.
\left(x+2\right)\left(x+5\right)
Үлестіру сипаты арқылы x+2 ортақ көбейткішін жақша сыртына шығарыңыз.
x^{2}+7x+10=0
Квадраттық көпмүшені мына түрлендіру арқылы көбейткіштерге жіктеуге болады: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), мұнда x_{1} және x_{2} — ax^{2}+bx+c=0 квадрат теңдеуінің шешімдері.
x=\frac{-7±\sqrt{7^{2}-4\times 10}}{2}
Формуланың барлық теңдеулерін ax^{2}+bx+c=0 квадраттық формуланың көмегімен шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формула бірінші шешімі ± плюс мәнді болғандағы, ал екіншісі шешімі минус мәнді болғандағы екі шешім ұсынады.
x=\frac{-7±\sqrt{49-4\times 10}}{2}
7 санының квадратын шығарыңыз.
x=\frac{-7±\sqrt{49-40}}{2}
-4 санын 10 санына көбейтіңіз.
x=\frac{-7±\sqrt{9}}{2}
49 санын -40 санына қосу.
x=\frac{-7±3}{2}
9 санының квадраттық түбірін шығарыңыз.
x=-\frac{4}{2}
Енді ± плюс болған кездегі x=\frac{-7±3}{2} теңдеуін шешіңіз. -7 санын 3 санына қосу.
x=-2
-4 санын 2 санына бөліңіз.
x=-\frac{10}{2}
Енді ± минус болған кездегі x=\frac{-7±3}{2} теңдеуін шешіңіз. 3 мәнінен -7 мәнін алу.
x=-5
-10 санын 2 санына бөліңіз.
x^{2}+7x+10=\left(x-\left(-2\right)\right)\left(x-\left(-5\right)\right)
Бастапқы өрнекті мына формула бойынша көбейткіштерге жіктеңіз: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). x_{1} мәнінің орнына -2 санын, ал x_{2} мәнінің орнына -5 санын қойыңыз.
x^{2}+7x+10=\left(x+2\right)\left(x+5\right)
p-\left(-q\right) түріндегі өрнектердің барлығын келесідей ықшамдаңыз: p+q.