Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

x+y=3,-x+y=-1
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=3
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y+3
Теңдеудің екі жағынан y санын алып тастаңыз.
-\left(-y+3\right)+y=-1
Басқа теңдеуде -y+3 мәнін x мәнімен ауыстырыңыз, -x+y=-1.
y-3+y=-1
-1 санын -y+3 санына көбейтіңіз.
2y-3=-1
y санын y санына қосу.
2y=2
Теңдеудің екі жағына да 3 санын қосыңыз.
y=1
Екі жағын да 2 санына бөліңіз.
x=-1+3
x=-y+3 теңдеуінде 1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=2
3 санын -1 санына қосу.
x=2,y=1
Жүйедегі ақаулар енді шешілді.
x+y=3,-x+y=-1
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\-1&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\left(-1\right)\\\frac{1}{2}\times 3+\frac{1}{2}\left(-1\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=2,y=1
x және y матрица элементтерін шығарыңыз.
x+y=3,-x+y=-1
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
x+x+y-y=3+1
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -x+y=-1 мәнін x+y=3 мәнінен алып тастаңыз.
x+x=3+1
y санын -y санына қосу. y және -y мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
2x=3+1
x санын x санына қосу.
2x=4
3 санын 1 санына қосу.
x=2
Екі жағын да 2 санына бөліңіз.
-2+y=-1
-x+y=-1 теңдеуінде 2 мәнін x мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, y мәнін тікелей таба аласыз.
y=1
Теңдеудің екі жағына да 2 санын қосыңыз.
x=2,y=1
Жүйедегі ақаулар енді шешілді.