x, y мәнін табыңыз
x=5
y=3
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
2y-x=1
Екінші теңдеуді шешіңіз. Екі жағынан да x мәнін қысқартыңыз.
x+y=8,-x+2y=1
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=8
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y+8
Теңдеудің екі жағынан y санын алып тастаңыз.
-\left(-y+8\right)+2y=1
Басқа теңдеуде -y+8 мәнін x мәнімен ауыстырыңыз, -x+2y=1.
y-8+2y=1
-1 санын -y+8 санына көбейтіңіз.
3y-8=1
y санын 2y санына қосу.
3y=9
Теңдеудің екі жағына да 8 санын қосыңыз.
y=3
Екі жағын да 3 санына бөліңіз.
x=-3+8
x=-y+8 теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=5
8 санын -3 санына қосу.
x=5,y=3
Жүйедегі ақаулар енді шешілді.
2y-x=1
Екінші теңдеуді шешіңіз. Екі жағынан да x мәнін қысқартыңыз.
x+y=8,-x+2y=1
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\1\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}1&1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\-1&2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-1\right)}&-\frac{1}{2-\left(-1\right)}\\-\frac{-1}{2-\left(-1\right)}&\frac{1}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}8\\1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 8-\frac{1}{3}\\\frac{1}{3}\times 8+\frac{1}{3}\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=5,y=3
x және y матрица элементтерін шығарыңыз.
2y-x=1
Екінші теңдеуді шешіңіз. Екі жағынан да x мәнін қысқартыңыз.
x+y=8,-x+2y=1
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
-x-y=-8,-x+2y=1
x және -x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді -1 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
-x+x-y-2y=-8-1
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -x+2y=1 мәнін -x-y=-8 мәнінен алып тастаңыз.
-y-2y=-8-1
-x санын x санына қосу. -x және x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-3y=-8-1
-y санын -2y санына қосу.
-3y=-9
-8 санын -1 санына қосу.
y=3
Екі жағын да -3 санына бөліңіз.
-x+2\times 3=1
-x+2y=1 теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
-x+6=1
2 санын 3 санына көбейтіңіз.
-x=-5
Теңдеудің екі жағынан 6 санын алып тастаңыз.
x=5
Екі жағын да -1 санына бөліңіз.
x=5,y=3
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}