x, y мәнін табыңыз
x=11
y=-4
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x+y=7,5x+12y=7
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=7
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y+7
Теңдеудің екі жағынан y санын алып тастаңыз.
5\left(-y+7\right)+12y=7
Басқа теңдеуде -y+7 мәнін x мәнімен ауыстырыңыз, 5x+12y=7.
-5y+35+12y=7
5 санын -y+7 санына көбейтіңіз.
7y+35=7
-5y санын 12y санына қосу.
7y=-28
Теңдеудің екі жағынан 35 санын алып тастаңыз.
y=-4
Екі жағын да 7 санына бөліңіз.
x=-\left(-4\right)+7
x=-y+7 теңдеуінде -4 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=4+7
-1 санын -4 санына көбейтіңіз.
x=11
7 санын 4 санына қосу.
x=11,y=-4
Жүйедегі ақаулар енді шешілді.
x+y=7,5x+12y=7
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\7\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}1&1\\5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\5&12\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{12-5}&-\frac{1}{12-5}\\-\frac{5}{12-5}&\frac{1}{12-5}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}&-\frac{1}{7}\\-\frac{5}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}\times 7-\frac{1}{7}\times 7\\-\frac{5}{7}\times 7+\frac{1}{7}\times 7\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\-4\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=11,y=-4
x және y матрица элементтерін шығарыңыз.
x+y=7,5x+12y=7
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
5x+5y=5\times 7,5x+12y=7
x және 5x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 5 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
5x+5y=35,5x+12y=7
Қысқартыңыз.
5x-5x+5y-12y=35-7
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 5x+12y=7 мәнін 5x+5y=35 мәнінен алып тастаңыз.
5y-12y=35-7
5x санын -5x санына қосу. 5x және -5x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-7y=35-7
5y санын -12y санына қосу.
-7y=28
35 санын -7 санына қосу.
y=-4
Екі жағын да -7 санына бөліңіз.
5x+12\left(-4\right)=7
5x+12y=7 теңдеуінде -4 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
5x-48=7
12 санын -4 санына көбейтіңіз.
5x=55
Теңдеудің екі жағына да 48 санын қосыңыз.
x=11
Екі жағын да 5 санына бөліңіз.
x=11,y=-4
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}