x, y мәнін табыңыз
x=-5
y=2
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
6x+12y=-6,2x+5y=0
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
6x+12y=-6
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
6x=-12y-6
Теңдеудің екі жағынан 12y санын алып тастаңыз.
x=\frac{1}{6}\left(-12y-6\right)
Екі жағын да 6 санына бөліңіз.
x=-2y-1
\frac{1}{6} санын -12y-6 санына көбейтіңіз.
2\left(-2y-1\right)+5y=0
Басқа теңдеуде -2y-1 мәнін x мәнімен ауыстырыңыз, 2x+5y=0.
-4y-2+5y=0
2 санын -2y-1 санына көбейтіңіз.
y-2=0
-4y санын 5y санына қосу.
y=2
Теңдеудің екі жағына да 2 санын қосыңыз.
x=-2\times 2-1
x=-2y-1 теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-4-1
-2 санын 2 санына көбейтіңіз.
x=-5
-1 санын -4 санына қосу.
x=-5,y=2
Жүйедегі ақаулар енді шешілді.
6x+12y=-6,2x+5y=0
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}6&12\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\0\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}6&12\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\0\end{matrix}\right)
Теңдеуді \left(\begin{matrix}6&12\\2&5\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\0\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\0\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-12\times 2}&-\frac{12}{6\times 5-12\times 2}\\-\frac{2}{6\times 5-12\times 2}&\frac{6}{6\times 5-12\times 2}\end{matrix}\right)\left(\begin{matrix}-6\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-2\\-\frac{1}{3}&1\end{matrix}\right)\left(\begin{matrix}-6\\0\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\left(-6\right)\\-\frac{1}{3}\left(-6\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=-5,y=2
x және y матрица элементтерін шығарыңыз.
6x+12y=-6,2x+5y=0
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2\times 6x+2\times 12y=2\left(-6\right),6\times 2x+6\times 5y=0
6x және 2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 6 санына көбейтіңіз.
12x+24y=-12,12x+30y=0
Қысқартыңыз.
12x-12x+24y-30y=-12
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 12x+30y=0 мәнін 12x+24y=-12 мәнінен алып тастаңыз.
24y-30y=-12
12x санын -12x санына қосу. 12x және -12x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-6y=-12
24y санын -30y санына қосу.
y=2
Екі жағын да -6 санына бөліңіз.
2x+5\times 2=0
2x+5y=0 теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
2x+10=0
5 санын 2 санына көбейтіңіз.
2x=-10
Теңдеудің екі жағынан 10 санын алып тастаңыз.
x=-5
Екі жағын да 2 санына бөліңіз.
x=-5,y=2
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}