Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

3x+y=10,4x-y=4
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x+y=10
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=-y+10
Теңдеудің екі жағынан y санын алып тастаңыз.
x=\frac{1}{3}\left(-y+10\right)
Екі жағын да 3 санына бөліңіз.
x=-\frac{1}{3}y+\frac{10}{3}
\frac{1}{3} санын -y+10 санына көбейтіңіз.
4\left(-\frac{1}{3}y+\frac{10}{3}\right)-y=4
Басқа теңдеуде \frac{-y+10}{3} мәнін x мәнімен ауыстырыңыз, 4x-y=4.
-\frac{4}{3}y+\frac{40}{3}-y=4
4 санын \frac{-y+10}{3} санына көбейтіңіз.
-\frac{7}{3}y+\frac{40}{3}=4
-\frac{4y}{3} санын -y санына қосу.
-\frac{7}{3}y=-\frac{28}{3}
Теңдеудің екі жағынан \frac{40}{3} санын алып тастаңыз.
y=4
Теңдеудің екі жағын да -\frac{7}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=-\frac{1}{3}\times 4+\frac{10}{3}
x=-\frac{1}{3}y+\frac{10}{3} теңдеуінде 4 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{-4+10}{3}
-\frac{1}{3} санын 4 санына көбейтіңіз.
x=2
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{10}{3} бөлшегіне -\frac{4}{3} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=2,y=4
Жүйедегі ақаулар енді шешілді.
3x+y=10,4x-y=4
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\4\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&1\\4&-1\end{matrix}\right))\left(\begin{matrix}3&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\4&-1\end{matrix}\right))\left(\begin{matrix}10\\4\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&1\\4&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\4&-1\end{matrix}\right))\left(\begin{matrix}10\\4\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\4&-1\end{matrix}\right))\left(\begin{matrix}10\\4\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-4}&-\frac{1}{3\left(-1\right)-4}\\-\frac{4}{3\left(-1\right)-4}&\frac{3}{3\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}10\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\\frac{4}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}10\\4\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 10+\frac{1}{7}\times 4\\\frac{4}{7}\times 10-\frac{3}{7}\times 4\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=2,y=4
x және y матрица элементтерін шығарыңыз.
3x+y=10,4x-y=4
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
4\times 3x+4y=4\times 10,3\times 4x+3\left(-1\right)y=3\times 4
3x және 4x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 4 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына көбейтіңіз.
12x+4y=40,12x-3y=12
Қысқартыңыз.
12x-12x+4y+3y=40-12
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 12x-3y=12 мәнін 12x+4y=40 мәнінен алып тастаңыз.
4y+3y=40-12
12x санын -12x санына қосу. 12x және -12x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
7y=40-12
4y санын 3y санына қосу.
7y=28
40 санын -12 санына қосу.
y=4
Екі жағын да 7 санына бөліңіз.
4x-4=4
4x-y=4 теңдеуінде 4 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
4x=8
Теңдеудің екі жағына да 4 санын қосыңыз.
x=2
Екі жағын да 4 санына бөліңіз.
x=2,y=4
Жүйедегі ақаулар енді шешілді.