Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

2x+y=7,4x-y=5
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
2x+y=7
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
2x=-y+7
Теңдеудің екі жағынан y санын алып тастаңыз.
x=\frac{1}{2}\left(-y+7\right)
Екі жағын да 2 санына бөліңіз.
x=-\frac{1}{2}y+\frac{7}{2}
\frac{1}{2} санын -y+7 санына көбейтіңіз.
4\left(-\frac{1}{2}y+\frac{7}{2}\right)-y=5
Басқа теңдеуде \frac{-y+7}{2} мәнін x мәнімен ауыстырыңыз, 4x-y=5.
-2y+14-y=5
4 санын \frac{-y+7}{2} санына көбейтіңіз.
-3y+14=5
-2y санын -y санына қосу.
-3y=-9
Теңдеудің екі жағынан 14 санын алып тастаңыз.
y=3
Екі жағын да -3 санына бөліңіз.
x=-\frac{1}{2}\times 3+\frac{7}{2}
x=-\frac{1}{2}y+\frac{7}{2} теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{-3+7}{2}
-\frac{1}{2} санын 3 санына көбейтіңіз.
x=2
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{7}{2} бөлшегіне -\frac{3}{2} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=2,y=3
Жүйедегі ақаулар енді шешілді.
2x+y=7,4x-y=5
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Теңдеуді \left(\begin{matrix}2&1\\4&-1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-4}&-\frac{1}{2\left(-1\right)-4}\\-\frac{4}{2\left(-1\right)-4}&\frac{2}{2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 7+\frac{1}{6}\times 5\\\frac{2}{3}\times 7-\frac{1}{3}\times 5\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=2,y=3
x және y матрица элементтерін шығарыңыз.
2x+y=7,4x-y=5
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
4\times 2x+4y=4\times 7,2\times 4x+2\left(-1\right)y=2\times 5
2x және 4x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 4 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына көбейтіңіз.
8x+4y=28,8x-2y=10
Қысқартыңыз.
8x-8x+4y+2y=28-10
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 8x-2y=10 мәнін 8x+4y=28 мәнінен алып тастаңыз.
4y+2y=28-10
8x санын -8x санына қосу. 8x және -8x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
6y=28-10
4y санын 2y санына қосу.
6y=18
28 санын -10 санына қосу.
y=3
Екі жағын да 6 санына бөліңіз.
4x-3=5
4x-y=5 теңдеуінде 3 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
4x=8
Теңдеудің екі жағына да 3 санын қосыңыз.
x=2
Екі жағын да 4 санына бөліңіз.
x=2,y=3
Жүйедегі ақаулар енді шешілді.