x, y мәнін табыңыз
x=-4
y=-1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x+3y+7=0
Бірінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
x+3y=-7
Екі жағынан да 7 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
2x+y+9=0
Екінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
2x+y=-9
Екі жағынан да 9 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
x+3y=-7,2x+y=-9
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+3y=-7
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-3y-7
Теңдеудің екі жағынан 3y санын алып тастаңыз.
2\left(-3y-7\right)+y=-9
Басқа теңдеуде -3y-7 мәнін x мәнімен ауыстырыңыз, 2x+y=-9.
-6y-14+y=-9
2 санын -3y-7 санына көбейтіңіз.
-5y-14=-9
-6y санын y санына қосу.
-5y=5
Теңдеудің екі жағына да 14 санын қосыңыз.
y=-1
Екі жағын да -5 санына бөліңіз.
x=-3\left(-1\right)-7
x=-3y-7 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=3-7
-3 санын -1 санына көбейтіңіз.
x=-4
-7 санын 3 санына қосу.
x=-4,y=-1
Жүйедегі ақаулар енді шешілді.
x+3y+7=0
Бірінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
x+3y=-7
Екі жағынан да 7 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
2x+y+9=0
Екінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
2x+y=-9
Екі жағынан да 9 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
x+3y=-7,2x+y=-9
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-9\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&3\\2&1\end{matrix}\right))\left(\begin{matrix}1&3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&1\end{matrix}\right))\left(\begin{matrix}-7\\-9\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&3\\2&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&1\end{matrix}\right))\left(\begin{matrix}-7\\-9\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&1\end{matrix}\right))\left(\begin{matrix}-7\\-9\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3\times 2}&-\frac{3}{1-3\times 2}\\-\frac{2}{1-3\times 2}&\frac{1}{1-3\times 2}\end{matrix}\right)\left(\begin{matrix}-7\\-9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{3}{5}\\\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-7\\-9\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-7\right)+\frac{3}{5}\left(-9\right)\\\frac{2}{5}\left(-7\right)-\frac{1}{5}\left(-9\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=-4,y=-1
x және y матрица элементтерін шығарыңыз.
x+3y+7=0
Бірінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
x+3y=-7
Екі жағынан да 7 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
2x+y+9=0
Екінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
2x+y=-9
Екі жағынан да 9 мәнін қысқартыңыз. Нөлден алынған кез келген сан теріс мәнді береді.
x+3y=-7,2x+y=-9
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2x+2\times 3y=2\left(-7\right),2x+y=-9
x және 2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
2x+6y=-14,2x+y=-9
Қысқартыңыз.
2x-2x+6y-y=-14+9
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 2x+y=-9 мәнін 2x+6y=-14 мәнінен алып тастаңыз.
6y-y=-14+9
2x санын -2x санына қосу. 2x және -2x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
5y=-14+9
6y санын -y санына қосу.
5y=-5
-14 санын 9 санына қосу.
y=-1
Екі жағын да 5 санына бөліңіз.
2x-1=-9
2x+y=-9 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
2x=-8
Теңдеудің екі жағына да 1 санын қосыңыз.
x=-4
Екі жағын да 2 санына бөліңіз.
x=-4,y=-1
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}