a мәнін табыңыз
a=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}\text{, }not(n_{5}<0)\text{ and }\left(\exists n_{5}\in \mathrm{Z}\text{ : }\left(\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{ or }\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=\pi +arcSin(\frac{1}{9}\times 3^{\frac{1}{2}}+\frac{5}{18}\times 6^{\frac{1}{2}})+2n_{1}\pi \right)
a=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}\text{, }not(n_{5}<0)\text{ and }\left(\exists n_{5}\in \mathrm{Z}\text{ : }\left(\left(2\pi n_{5}\right)^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(2\pi n_{5}\right)^{\frac{1}{2}}=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{ or }\left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(2\pi n_{5}\right)^{\frac{1}{2}}=\pi +arcSin(\frac{1}{9}\times 3^{\frac{1}{2}}+\frac{5}{18}\times 6^{\frac{1}{2}})+2n_{1}\pi \right)
a=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}\text{, }not(n_{5}<0)\text{ and }\left(\exists n_{5}\in \mathrm{Z}\text{ : }\left(\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{ or }\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\pi +arcSin(\frac{1}{9}\times 3^{\frac{1}{2}}+\frac{5}{18}\times 6^{\frac{1}{2}})+2n_{1}\pi \right)
a=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}\text{, }not(n_{5}<0)\text{ and }\left(\exists n_{5}\in \mathrm{Z}\text{ : }\left(\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{ or }\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\pi +arcSin(\frac{1}{9}\times 3^{\frac{1}{2}}+\frac{5}{18}\times 6^{\frac{1}{2}})+2n_{1}\pi \right)
a=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}\text{, }not(n_{5}<0)\text{ and }\left(\exists n_{5}\in \mathrm{Z}\text{ : }\left(\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{ or }\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\right)\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\left(-1\right)\times \left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-1\right)arcSin(\frac{1}{9}\times 3^{\frac{1}{2}}+\left(-\frac{5}{18}\right)\times 6^{\frac{1}{2}})+2n_{2}\pi \right)
a=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}\text{, }not(n_{5}<0)\text{ and }\left(\exists n_{5}\in \mathrm{Z}\text{ : }\left(\left(2\pi n_{5}\right)^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(2\pi n_{5}\right)^{\frac{1}{2}}=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{ or }\left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\right)\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\left(2\pi n_{5}\right)^{\frac{1}{2}}=\left(-1\right)arcSin(\frac{1}{9}\times 3^{\frac{1}{2}}+\left(-\frac{5}{18}\right)\times 6^{\frac{1}{2}})+2n_{2}\pi \right)
a=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}\text{, }not(n_{5}<0)\text{ and }\left(\exists n_{5}\in \mathrm{Z}\text{ : }\left(\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{ or }\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\right)\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\left(-\frac{1}{2}\right)\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-1\right)arcSin(\frac{1}{9}\times 3^{\frac{1}{2}}+\left(-\frac{5}{18}\right)\times 6^{\frac{1}{2}})+2n_{2}\pi \right)
a=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}\text{, }not(n_{5}<0)\text{ and }\left(\exists n_{5}\in \mathrm{Z}\text{ : }\left(\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\frac{1}{2}\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-\frac{1}{2}\right)\times 2^{\frac{1}{2}}\left(1+4n_{5}\right)^{\frac{1}{2}}\pi ^{\frac{1}{2}}\text{ or }\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\text{ or }\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-1\right)\times 2^{\frac{1}{2}}\pi ^{\frac{1}{2}}n_{5}^{\frac{1}{2}}\right)\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\frac{1}{2}\times \left(2\left(1+4n_{5}\right)\pi \right)^{\frac{1}{2}}=\left(-1\right)arcSin(\frac{1}{9}\times 3^{\frac{1}{2}}+\left(-\frac{5}{18}\right)\times 6^{\frac{1}{2}})+2n_{2}\pi \right)
Ортақ пайдалану
Алмасу буферіне көшірілген
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}