Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

2x+2y=4,-2x+3y=-9
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
2x+2y=4
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
2x=-2y+4
Теңдеудің екі жағынан 2y санын алып тастаңыз.
x=\frac{1}{2}\left(-2y+4\right)
Екі жағын да 2 санына бөліңіз.
x=-y+2
\frac{1}{2} санын -2y+4 санына көбейтіңіз.
-2\left(-y+2\right)+3y=-9
Басқа теңдеуде -y+2 мәнін x мәнімен ауыстырыңыз, -2x+3y=-9.
2y-4+3y=-9
-2 санын -y+2 санына көбейтіңіз.
5y-4=-9
2y санын 3y санына қосу.
5y=-5
Теңдеудің екі жағына да 4 санын қосыңыз.
y=-1
Екі жағын да 5 санына бөліңіз.
x=-\left(-1\right)+2
x=-y+2 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=1+2
-1 санын -1 санына көбейтіңіз.
x=3
2 санын 1 санына қосу.
x=3,y=-1
Жүйедегі ақаулар енді шешілді.
2x+2y=4,-2x+3y=-9
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-9\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
Теңдеуді \left(\begin{matrix}2&2\\-2&3\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-2\left(-2\right)}&-\frac{2}{2\times 3-2\left(-2\right)}\\-\frac{-2}{2\times 3-2\left(-2\right)}&\frac{2}{2\times 3-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 4-\frac{1}{5}\left(-9\right)\\\frac{1}{5}\times 4+\frac{1}{5}\left(-9\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=3,y=-1
x және y матрица элементтерін шығарыңыз.
2x+2y=4,-2x+3y=-9
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
-2\times 2x-2\times 2y=-2\times 4,2\left(-2\right)x+2\times 3y=2\left(-9\right)
2x және -2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді -2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына көбейтіңіз.
-4x-4y=-8,-4x+6y=-18
Қысқартыңыз.
-4x+4x-4y-6y=-8+18
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -4x+6y=-18 мәнін -4x-4y=-8 мәнінен алып тастаңыз.
-4y-6y=-8+18
-4x санын 4x санына қосу. -4x және 4x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-10y=-8+18
-4y санын -6y санына қосу.
-10y=10
-8 санын 18 санына қосу.
y=-1
Екі жағын да -10 санына бөліңіз.
-2x+3\left(-1\right)=-9
-2x+3y=-9 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
-2x-3=-9
3 санын -1 санына көбейтіңіз.
-2x=-6
Теңдеудің екі жағына да 3 санын қосыңыз.
x=3
Екі жағын да -2 санына бөліңіз.
x=3,y=-1
Жүйедегі ақаулар енді шешілді.