\left\{ \begin{array} { l } { x + y = 4 } \\ { 4 x - 3 y = - 19 } \end{array} \right.
x, y мәнін табыңыз
x=-1
y=5
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
x+y=4,4x-3y=-19
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
x+y=4
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
x=-y+4
Теңдеудің екі жағынан y санын алып тастаңыз.
4\left(-y+4\right)-3y=-19
Басқа теңдеуде -y+4 мәнін x мәнімен ауыстырыңыз, 4x-3y=-19.
-4y+16-3y=-19
4 санын -y+4 санына көбейтіңіз.
-7y+16=-19
-4y санын -3y санына қосу.
-7y=-35
Теңдеудің екі жағынан 16 санын алып тастаңыз.
y=5
Екі жағын да -7 санына бөліңіз.
x=-5+4
x=-y+4 теңдеуінде 5 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-1
4 санын -5 санына қосу.
x=-1,y=5
Жүйедегі ақаулар енді шешілді.
x+y=4,4x-3y=-19
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-19\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\4&-3\end{matrix}\right))\left(\begin{matrix}1&1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-3\end{matrix}\right))\left(\begin{matrix}4\\-19\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\4&-3\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-3\end{matrix}\right))\left(\begin{matrix}4\\-19\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-3\end{matrix}\right))\left(\begin{matrix}4\\-19\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-4}&-\frac{1}{-3-4}\\-\frac{4}{-3-4}&\frac{1}{-3-4}\end{matrix}\right)\left(\begin{matrix}4\\-19\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{1}{7}\\\frac{4}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\-19\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 4+\frac{1}{7}\left(-19\right)\\\frac{4}{7}\times 4-\frac{1}{7}\left(-19\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=-1,y=5
x және y матрица элементтерін шығарыңыз.
x+y=4,4x-3y=-19
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
4x+4y=4\times 4,4x-3y=-19
x және 4x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 4 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 1 санына көбейтіңіз.
4x+4y=16,4x-3y=-19
Қысқартыңыз.
4x-4x+4y+3y=16+19
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 4x-3y=-19 мәнін 4x+4y=16 мәнінен алып тастаңыз.
4y+3y=16+19
4x санын -4x санына қосу. 4x және -4x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
7y=16+19
4y санын 3y санына қосу.
7y=35
16 санын 19 санына қосу.
y=5
Екі жағын да 7 санына бөліңіз.
4x-3\times 5=-19
4x-3y=-19 теңдеуінде 5 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
4x-15=-19
-3 санын 5 санына көбейтіңіз.
4x=-4
Теңдеудің екі жағына да 15 санын қосыңыз.
x=-1
Екі жағын да 4 санына бөліңіз.
x=-1,y=5
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}