\left\{ \begin{array} { l } { 5 x - 2 y = 7 } \\ { 2 x + 7 y = - 5 } \end{array} \right.
x, y мәнін табыңыз
x=1
y=-1
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
5x-2y=7,2x+7y=-5
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
5x-2y=7
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
5x=2y+7
Теңдеудің екі жағына да 2y санын қосыңыз.
x=\frac{1}{5}\left(2y+7\right)
Екі жағын да 5 санына бөліңіз.
x=\frac{2}{5}y+\frac{7}{5}
\frac{1}{5} санын 2y+7 санына көбейтіңіз.
2\left(\frac{2}{5}y+\frac{7}{5}\right)+7y=-5
Басқа теңдеуде \frac{2y+7}{5} мәнін x мәнімен ауыстырыңыз, 2x+7y=-5.
\frac{4}{5}y+\frac{14}{5}+7y=-5
2 санын \frac{2y+7}{5} санына көбейтіңіз.
\frac{39}{5}y+\frac{14}{5}=-5
\frac{4y}{5} санын 7y санына қосу.
\frac{39}{5}y=-\frac{39}{5}
Теңдеудің екі жағынан \frac{14}{5} санын алып тастаңыз.
y=-1
Теңдеудің екі жағын да \frac{39}{5} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{2}{5}\left(-1\right)+\frac{7}{5}
x=\frac{2}{5}y+\frac{7}{5} теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{-2+7}{5}
\frac{2}{5} санын -1 санына көбейтіңіз.
x=1
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{7}{5} бөлшегіне -\frac{2}{5} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=1,y=-1
Жүйедегі ақаулар енді шешілді.
5x-2y=7,2x+7y=-5
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}5&-2\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-5\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}5&-2\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Теңдеуді \left(\begin{matrix}5&-2\\2&7\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-2\times 2\right)}&-\frac{-2}{5\times 7-\left(-2\times 2\right)}\\-\frac{2}{5\times 7-\left(-2\times 2\right)}&\frac{5}{5\times 7-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{39}&\frac{2}{39}\\-\frac{2}{39}&\frac{5}{39}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{39}\times 7+\frac{2}{39}\left(-5\right)\\-\frac{2}{39}\times 7+\frac{5}{39}\left(-5\right)\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=1,y=-1
x және y матрица элементтерін шығарыңыз.
5x-2y=7,2x+7y=-5
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2\times 5x+2\left(-2\right)y=2\times 7,5\times 2x+5\times 7y=5\left(-5\right)
5x және 2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 5 санына көбейтіңіз.
10x-4y=14,10x+35y=-25
Қысқартыңыз.
10x-10x-4y-35y=14+25
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 10x+35y=-25 мәнін 10x-4y=14 мәнінен алып тастаңыз.
-4y-35y=14+25
10x санын -10x санына қосу. 10x және -10x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-39y=14+25
-4y санын -35y санына қосу.
-39y=39
14 санын 25 санына қосу.
y=-1
Екі жағын да -39 санына бөліңіз.
2x+7\left(-1\right)=-5
2x+7y=-5 теңдеуінде -1 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
2x-7=-5
7 санын -1 санына көбейтіңіз.
2x=2
Теңдеудің екі жағына да 7 санын қосыңыз.
x=1
Екі жағын да 2 санына бөліңіз.
x=1,y=-1
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}