Негізгі мазмұнды өткізіп жіберу
x, y мәнін табыңыз
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

3x-2y=-4,2x+y=2
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
3x-2y=-4
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
3x=2y-4
Теңдеудің екі жағына да 2y санын қосыңыз.
x=\frac{1}{3}\left(2y-4\right)
Екі жағын да 3 санына бөліңіз.
x=\frac{2}{3}y-\frac{4}{3}
\frac{1}{3} санын -4+2y санына көбейтіңіз.
2\left(\frac{2}{3}y-\frac{4}{3}\right)+y=2
Басқа теңдеуде \frac{-4+2y}{3} мәнін x мәнімен ауыстырыңыз, 2x+y=2.
\frac{4}{3}y-\frac{8}{3}+y=2
2 санын \frac{-4+2y}{3} санына көбейтіңіз.
\frac{7}{3}y-\frac{8}{3}=2
\frac{4y}{3} санын y санына қосу.
\frac{7}{3}y=\frac{14}{3}
Теңдеудің екі жағына да \frac{8}{3} санын қосыңыз.
y=2
Теңдеудің екі жағын да \frac{7}{3} санына бөліңіз, ол екі жағын да кері бөлшекке көбейткенмен тең.
x=\frac{2}{3}\times 2-\frac{4}{3}
x=\frac{2}{3}y-\frac{4}{3} теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=\frac{4-4}{3}
\frac{2}{3} санын 2 санына көбейтіңіз.
x=0
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы -\frac{4}{3} бөлшегіне \frac{4}{3} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=0,y=2
Жүйедегі ақаулар енді шешілді.
3x-2y=-4,2x+y=2
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}3&-2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\2\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}3&-2\\2&1\end{matrix}\right))\left(\begin{matrix}3&-2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\2\end{matrix}\right)
Теңдеуді \left(\begin{matrix}3&-2\\2&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\2\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\2\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\times 2\right)}&-\frac{-2}{3-\left(-2\times 2\right)}\\-\frac{2}{3-\left(-2\times 2\right)}&\frac{3}{3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{2}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}-4\\2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-4\right)+\frac{2}{7}\times 2\\-\frac{2}{7}\left(-4\right)+\frac{3}{7}\times 2\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=0,y=2
x және y матрица элементтерін шығарыңыз.
3x-2y=-4,2x+y=2
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
2\times 3x+2\left(-2\right)y=2\left(-4\right),3\times 2x+3y=3\times 2
3x және 2x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына көбейтіңіз.
6x-4y=-8,6x+3y=6
Қысқартыңыз.
6x-6x-4y-3y=-8-6
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 6x+3y=6 мәнін 6x-4y=-8 мәнінен алып тастаңыз.
-4y-3y=-8-6
6x санын -6x санына қосу. 6x және -6x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-7y=-8-6
-4y санын -3y санына қосу.
-7y=-14
-8 санын -6 санына қосу.
y=2
Екі жағын да -7 санына бөліңіз.
2x+2=2
2x+y=2 теңдеуінде 2 мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
2x=0
Теңдеудің екі жағынан 2 санын алып тастаңыз.
x=0
Екі жағын да 2 санына бөліңіз.
x=0,y=2
Жүйедегі ақаулар енді шешілді.