\left\{ \begin{array} { l } { 2 x + 3 y = 13 } \\ { 6 x + y = 11 } \end{array} \right.
x, y мәнін табыңыз
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
y = \frac{7}{2} = 3\frac{1}{2} = 3.5
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
2x+3y=13,6x+y=11
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
2x+3y=13
Теңдеулердің бірін таңдаңыз және x мәнін теңдік белгінің сол жағына шығару арқылы x мәнін шешіңіз.
2x=-3y+13
Теңдеудің екі жағынан 3y санын алып тастаңыз.
x=\frac{1}{2}\left(-3y+13\right)
Екі жағын да 2 санына бөліңіз.
x=-\frac{3}{2}y+\frac{13}{2}
\frac{1}{2} санын -3y+13 санына көбейтіңіз.
6\left(-\frac{3}{2}y+\frac{13}{2}\right)+y=11
Басқа теңдеуде \frac{-3y+13}{2} мәнін x мәнімен ауыстырыңыз, 6x+y=11.
-9y+39+y=11
6 санын \frac{-3y+13}{2} санына көбейтіңіз.
-8y+39=11
-9y санын y санына қосу.
-8y=-28
Теңдеудің екі жағынан 39 санын алып тастаңыз.
y=\frac{7}{2}
Екі жағын да -8 санына бөліңіз.
x=-\frac{3}{2}\times \frac{7}{2}+\frac{13}{2}
x=-\frac{3}{2}y+\frac{13}{2} теңдеуінде \frac{7}{2} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
x=-\frac{21}{4}+\frac{13}{2}
Бөлгішін бөлгішіне және алымын алымына көбейту арқылы \frac{7}{2} санын -\frac{3}{2} санына көбейтіңіз. Содан кейін бөлшекті барынша қысқартыңыз.
x=\frac{5}{4}
Бөлшектің ортақ бөлгішін тауып, алымдарды қосу арқылы \frac{13}{2} бөлшегіне -\frac{21}{4} бөлшегін қосыңыз. Содан соң, бөлшекті барынша қысқартыңыз.
x=\frac{5}{4},y=\frac{7}{2}
Жүйедегі ақаулар енді шешілді.
2x+3y=13,6x+y=11
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}2&3\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\11\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}2&3\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
Теңдеуді \left(\begin{matrix}2&3\\6&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\times 6}&-\frac{3}{2-3\times 6}\\-\frac{6}{2-3\times 6}&\frac{2}{2-3\times 6}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{16}&\frac{3}{16}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{16}\times 13+\frac{3}{16}\times 11\\\frac{3}{8}\times 13-\frac{1}{8}\times 11\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\\\frac{7}{2}\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
x=\frac{5}{4},y=\frac{7}{2}
x және y матрица элементтерін шығарыңыз.
2x+3y=13,6x+y=11
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
6\times 2x+6\times 3y=6\times 13,2\times 6x+2y=2\times 11
2x және 6x мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 6 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді 2 санына көбейтіңіз.
12x+18y=78,12x+2y=22
Қысқартыңыз.
12x-12x+18y-2y=78-22
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 12x+2y=22 мәнін 12x+18y=78 мәнінен алып тастаңыз.
18y-2y=78-22
12x санын -12x санына қосу. 12x және -12x мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
16y=78-22
18y санын -2y санына қосу.
16y=56
78 санын -22 санына қосу.
y=\frac{7}{2}
Екі жағын да 16 санына бөліңіз.
6x+\frac{7}{2}=11
6x+y=11 теңдеуінде \frac{7}{2} мәнін y мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, x мәнін тікелей таба аласыз.
6x=\frac{15}{2}
Теңдеудің екі жағынан \frac{7}{2} санын алып тастаңыз.
x=\frac{5}{4}
Екі жағын да 6 санына бөліңіз.
x=\frac{5}{4},y=\frac{7}{2}
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}