\left\{ \begin{array} { l } { 0 = - 1 + a + b } \\ { 0 = - 9 + 3 a + b } \end{array} \right.
a, b мәнін табыңыз
a=4
b=-3
Ортақ пайдалану
Алмасу буферіне көшірілген
-1+a+b=0
Бірінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
a+b=1
Екі жағына 1 қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
-9+3a+b=0
Екінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
3a+b=9
Екі жағына 9 қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
a+b=1,3a+b=9
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
a+b=1
Теңдеулердің бірін таңдаңыз және a мәнін теңдік белгінің сол жағына шығару арқылы a мәнін шешіңіз.
a=-b+1
Теңдеудің екі жағынан b санын алып тастаңыз.
3\left(-b+1\right)+b=9
Басқа теңдеуде -b+1 мәнін a мәнімен ауыстырыңыз, 3a+b=9.
-3b+3+b=9
3 санын -b+1 санына көбейтіңіз.
-2b+3=9
-3b санын b санына қосу.
-2b=6
Теңдеудің екі жағынан 3 санын алып тастаңыз.
b=-3
Екі жағын да -2 санына бөліңіз.
a=-\left(-3\right)+1
a=-b+1 теңдеуінде -3 мәнін b мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, a мәнін тікелей таба аласыз.
a=3+1
-1 санын -3 санына көбейтіңіз.
a=4
1 санын 3 санына қосу.
a=4,b=-3
Жүйедегі ақаулар енді шешілді.
-1+a+b=0
Бірінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
a+b=1
Екі жағына 1 қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
-9+3a+b=0
Екінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
3a+b=9
Екі жағына 9 қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
a+b=1,3a+b=9
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Теңдеуді \left(\begin{matrix}1&1\\3&1\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{1}{1-3}\\-\frac{3}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}+\frac{1}{2}\times 9\\\frac{3}{2}-\frac{1}{2}\times 9\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
a=4,b=-3
a және b матрица элементтерін шығарыңыз.
-1+a+b=0
Бірінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
a+b=1
Екі жағына 1 қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
-9+3a+b=0
Екінші теңдеуді шешіңіз. Теңдеу жақтарын барлық белгісіз мүшелері сол жағында болатындай етіп ауыстырыңыз.
3a+b=9
Екі жағына 9 қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
a+b=1,3a+b=9
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
a-3a+b-b=1-9
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы 3a+b=9 мәнін a+b=1 мәнінен алып тастаңыз.
a-3a=1-9
b санын -b санына қосу. b және -b мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
-2a=1-9
a санын -3a санына қосу.
-2a=-8
1 санын -9 санына қосу.
a=4
Екі жағын да -2 санына бөліңіз.
3\times 4+b=9
3a+b=9 теңдеуінде 4 мәнін a мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, b мәнін тікелей таба аласыз.
12+b=9
3 санын 4 санына көбейтіңіз.
b=-3
Теңдеудің екі жағынан 12 санын алып тастаңыз.
a=4,b=-3
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}