\left\{ \begin{array} { c } { - 2 a + 2 b = 2 } \\ { 3 a - 2 b = 2 } \end{array} \right.
a, b мәнін табыңыз
a=4
b=5
Ортақ пайдалану
Алмасу буферіне көшірілген
-2a+2b=2,3a-2b=2
Теңдеулер жұбын ауыстыру арқылы шешу үшін, алдымен бір белгісіз мүше теңдеулерінің бірін шешіңіз. Содан соң, сол белгісіз мүше нәтижесін басқа теңдеудегімен ауыстырыңыз.
-2a+2b=2
Теңдеулердің бірін таңдаңыз және a мәнін теңдік белгінің сол жағына шығару арқылы a мәнін шешіңіз.
-2a=-2b+2
Теңдеудің екі жағынан 2b санын алып тастаңыз.
a=-\frac{1}{2}\left(-2b+2\right)
Екі жағын да -2 санына бөліңіз.
a=b-1
-\frac{1}{2} санын -2b+2 санына көбейтіңіз.
3\left(b-1\right)-2b=2
Басқа теңдеуде b-1 мәнін a мәнімен ауыстырыңыз, 3a-2b=2.
3b-3-2b=2
3 санын b-1 санына көбейтіңіз.
b-3=2
3b санын -2b санына қосу.
b=5
Теңдеудің екі жағына да 3 санын қосыңыз.
a=5-1
a=b-1 теңдеуінде 5 мәнін b мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, a мәнін тікелей таба аласыз.
a=4
-1 санын 5 санына қосу.
a=4,b=5
Жүйедегі ақаулар енді шешілді.
-2a+2b=2,3a-2b=2
Теңдеулерді стандартты формулаға келтіріп, теңдеулер жүйесін шешу үшін матрицаларды пайдаланыңыз.
\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Теңдеулерді матрицалық пішінде жазыңыз.
inverse(\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Теңдеуді \left(\begin{matrix}-2&2\\3&-2\end{matrix}\right) кері матрицасына сол жағынан көбейту.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Матрица мен оның кері мәнінің көбейтіндісі жеке матрица болып табылады.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Теңдеу белгісінің сол жағындағы матрицаларды көбейту.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2\left(-2\right)-2\times 3}&-\frac{2}{-2\left(-2\right)-2\times 3}\\-\frac{3}{-2\left(-2\right)-2\times 3}&-\frac{2}{-2\left(-2\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) матрицасы үшін кері матрица \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) болып табылады, сондықтан матрица теңдеуін матрицаны көбейту мәселесі ретінде қайта жазуға болады.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1&1\\\frac{3}{2}&1\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2+2\\\frac{3}{2}\times 2+2\end{matrix}\right)
Матрицаларды көбейтіңіз.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
Арифметикалық есептерді шығарыңыз.
a=4,b=5
a және b матрица элементтерін шығарыңыз.
-2a+2b=2,3a-2b=2
Қысқарту арқылы шешу үшін, бір белгісіз мүшенің коэффициенттері екі теңдеуде де бірдей болуы керек, осылайша бір теңдеу екіншісінен алынғанда белгісіз мүшелер жойылады.
3\left(-2\right)a+3\times 2b=3\times 2,-2\times 3a-2\left(-2\right)b=-2\times 2
-2a және 3a мәндерін тең ету үшін, бірінші теңдеудің әрбір жағындағы барлық бос мүшелерді 3 санына, ал екінші теңдеудің әрбір жағындағы барлық бос мүшелерді -2 санына көбейтіңіз.
-6a+6b=6,-6a+4b=-4
Қысқартыңыз.
-6a+6a+6b-4b=6+4
Теңдеу белгісінің әрбір жағындағы ұқсас мүшелерді қысқарту арқылы -6a+4b=-4 мәнін -6a+6b=6 мәнінен алып тастаңыз.
6b-4b=6+4
-6a санын 6a санына қосу. -6a және 6a мүшелері қысқартылып, теңдеуде шешуге болатын тек бір белгісіз мүше қалады.
2b=6+4
6b санын -4b санына қосу.
2b=10
6 санын 4 санына қосу.
b=5
Екі жағын да 2 санына бөліңіз.
3a-2\times 5=2
3a-2b=2 теңдеуінде 5 мәнін b мәніне ауыстырыңыз. Шыққан теңдеуде бір ғана белгісіз шама болғандықтан, a мәнін тікелей таба аласыз.
3a-10=2
-2 санын 5 санына көбейтіңіз.
3a=12
Теңдеудің екі жағына да 10 санын қосыңыз.
a=4
Екі жағын да 3 санына бөліңіз.
a=4,b=5
Жүйедегі ақаулар енді шешілді.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}