Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\int 15t^{3}-135t^{2}+225t\mathrm{d}t
Алдымен белгісіз интегралды бағалаңыз.
\int 15t^{3}\mathrm{d}t+\int -135t^{2}\mathrm{d}t+\int 225t\mathrm{d}t
Қосындыны мүше бойынша интегралдау.
15\int t^{3}\mathrm{d}t-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
Әрбір шарттағы тұрақты мәнді фактор.
\frac{15t^{4}}{4}-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int t^{3}\mathrm{d}t және\frac{t^{4}}{4} орындарын ауыстырыңыз. 15 санын \frac{t^{4}}{4} санына көбейтіңіз.
\frac{15t^{4}}{4}-45t^{3}+225\int t\mathrm{d}t
\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int t^{2}\mathrm{d}t және\frac{t^{3}}{3} орындарын ауыстырыңыз. -135 санын \frac{t^{3}}{3} санына көбейтіңіз.
\frac{15t^{4}}{4}-45t^{3}+\frac{225t^{2}}{2}
\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} үшін k\neq -1 болғандықтан, \int t\mathrm{d}t және\frac{t^{2}}{2} орындарын ауыстырыңыз. 225 санын \frac{t^{2}}{2} санына көбейтіңіз.
\frac{15}{4}\times 5^{4}-45\times 5^{3}+\frac{225}{2}\times 5^{2}-\left(\frac{15}{4}\times 1^{4}-45\times 1^{3}+\frac{225}{2}\times 1^{2}\right)
Анықталған интеграл интеграцияның төменгі шегінде бағаланатын кері туындыны алып тастағанда интегралдың жоғарғы шегінде бағаланатын өрнектің кері туынды түрі болып табылады.
-540
Қысқартыңыз.