Негізгі мазмұнды өткізіп жіберу
t мәнін табыңыз
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

-\left(t^{2}-3\right)+\left(t+1\right)\left(t+1\right)=\left(t-1\right)\times 4
t айнымалы мәні -1,1 мәндерінің ешқайсысына тең бола алмайды, себебі нөлге бөлу анықталмаған. Теңдеудің екі жағын да \left(t-1\right)\left(t+1\right) санына көбейтіңіз. Ең кіші ортақ бөлім: 1-t^{2},t-1,1+t.
-\left(t^{2}-3\right)+\left(t+1\right)^{2}=\left(t-1\right)\times 4
\left(t+1\right)^{2} шығару үшін, t+1 және t+1 сандарын көбейтіңіз.
-t^{2}+3+\left(t+1\right)^{2}=\left(t-1\right)\times 4
t^{2}-3 теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
-t^{2}+3+t^{2}+2t+1=\left(t-1\right)\times 4
\left(t+1\right)^{2} формуласын жіктеу үшін \left(a+b\right)^{2}=a^{2}+2ab+b^{2} Ньютон бином теоремасын пайдаланыңыз.
3+2t+1=\left(t-1\right)\times 4
-t^{2} және t^{2} мәндерін қоссаңыз, 0 мәні шығады.
4+2t=\left(t-1\right)\times 4
4 мәнін алу үшін, 3 және 1 мәндерін қосыңыз.
4+2t=4t-4
t-1 мәнін 4 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
4+2t-4t=-4
Екі жағынан да 4t мәнін қысқартыңыз.
4-2t=-4
2t және -4t мәндерін қоссаңыз, -2t мәні шығады.
-2t=-4-4
Екі жағынан да 4 мәнін қысқартыңыз.
-2t=-8
-8 мәнін алу үшін, -4 мәнінен 4 мәнін алып тастаңыз.
t=\frac{-8}{-2}
Екі жағын да -2 санына бөліңіз.
t=4
4 нәтижесін алу үшін, -8 мәнін -2 мәніне бөліңіз.