Негізгі мазмұнды өткізіп жіберу
x теңдеуін шешу
Tick mark Image
Граф

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\frac{1}{4}\times 3+\frac{1}{4}\left(-2\right)x-2>\frac{1}{3}x
\frac{1}{4} мәнін 3-2x мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{3}{4}+\frac{1}{4}\left(-2\right)x-2>\frac{1}{3}x
\frac{3}{4} шығару үшін, \frac{1}{4} және 3 сандарын көбейтіңіз.
\frac{3}{4}+\frac{-2}{4}x-2>\frac{1}{3}x
\frac{-2}{4} шығару үшін, \frac{1}{4} және -2 сандарын көбейтіңіз.
\frac{3}{4}-\frac{1}{2}x-2>\frac{1}{3}x
2 мәнін шегеру және алу арқылы \frac{-2}{4} үлесін ең аз мәнге азайтыңыз.
\frac{3}{4}-\frac{1}{2}x-\frac{8}{4}>\frac{1}{3}x
"2" санын "\frac{8}{4}" түріндегі бөлшекке түрлендіру.
\frac{3-8}{4}-\frac{1}{2}x>\frac{1}{3}x
\frac{3}{4} және \frac{8}{4} бөлшектерінің бөлімі бірдей болғандықтан, олардың алымдарын алу арқылы шегеріңіз.
-\frac{5}{4}-\frac{1}{2}x>\frac{1}{3}x
-5 мәнін алу үшін, 3 мәнінен 8 мәнін алып тастаңыз.
-\frac{5}{4}-\frac{1}{2}x-\frac{1}{3}x>0
Екі жағынан да \frac{1}{3}x мәнін қысқартыңыз.
-\frac{5}{4}-\frac{5}{6}x>0
-\frac{1}{2}x және -\frac{1}{3}x мәндерін қоссаңыз, -\frac{5}{6}x мәні шығады.
-\frac{5}{6}x>\frac{5}{4}
Екі жағына \frac{5}{4} қосу. Кез келген сан мен нөлдің қосындысы сол санның өзіне тең болады.
x<\frac{5}{4}\left(-\frac{6}{5}\right)
Екі жағын да -\frac{5}{6} санының кері шамасы -\frac{6}{5} санына көбейтіңіз. -\frac{5}{6} теріс болғандықтан, теңсіздік бағыты өзгереді.
x<\frac{5\left(-6\right)}{4\times 5}
\frac{5}{4} және -\frac{6}{5} сандарындағы алымдарды алымдарға, ал бөлімдерді бөлімдерге көбейтіңіз.
x<\frac{-6}{4}
Алым мен бөлімде 5 мәнін қысқарту.
x<-\frac{3}{2}
2 мәнін шегеру және алу арқылы \frac{-6}{4} үлесін ең аз мәнге азайтыңыз.