Негізгі мазмұнды өткізіп жіберу
Есептеу
Tick mark Image
Жаю
Tick mark Image

Веб-іздеуден ұқсас ақаулар

Ортақ пайдалану

\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a-2b\right)^{3} формуласын жіктеу үшін \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} Ньютон бином теоремасын пайдаланыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a-2\right)^{2} формуласын жіктеу үшін \left(p-q\right)^{2}=p^{2}-2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a+2\right)^{2} формуласын жіктеу үшін \left(p+q\right)^{2}=p^{2}+2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
a^{2}-4a+4 мәнін a^{2}+4a+4 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз және ұқсас мүшелерді біріктіріңіз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-8a^{2} және 4a^{2} мәндерін қоссаңыз, -4a^{2} мәні шығады.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(2-a^{2}\right)^{2} формуласын жіктеу үшін \left(p-q\right)^{2}=p^{2}-2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Бір санның дәрежесін басқа дәрежеге көтеру үшін, дәреже көрсеткіштерін көбейтіңіз. 4 көрсеткішін алу үшін, 2 және 2 мәндерін көбейтіңіз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4-4a^{2}+a^{4} теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
12 мәнін алу үшін, 16 мәнінен 4 мәнін алып тастаңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-4a^{2} және 4a^{2} мәндерін қоссаңыз, 0 мәні шығады.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
a^{4} және -a^{4} мәндерін қоссаңыз, 0 мәні шығады.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{3} шығару үшін, \frac{1}{36} және 12 сандарын көбейтіңіз.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{3} мәнін a^{3}-6a^{2}b+12ab^{2}-8b^{3} мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ab мәнін \frac{11}{3}b-a мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{11}{3}ab^{2}-ba^{2} теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4ab^{2} және -\frac{11}{3}ab^{2} мәндерін қоссаңыз, \frac{1}{3}ab^{2} мәні шығады.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-2a^{2}b және ba^{2} мәндерін қоссаңыз, -a^{2}b мәні шығады.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
\frac{1}{3}a-b мәнін b^{2}+a^{2} мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2} теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2} және -\frac{1}{3}ab^{2} мәндерін қоссаңыз, 0 мәні шығады.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
\frac{1}{3}a^{3} және -\frac{1}{3}a^{3} мәндерін қоссаңыз, 0 мәні шығады.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
-\frac{8}{3}b^{3} және b^{3} мәндерін қоссаңыз, -\frac{5}{3}b^{3} мәні шығады.
-\frac{5}{3}b^{3}
-a^{2}b және ba^{2} мәндерін қоссаңыз, 0 мәні шығады.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a-2b\right)^{3} формуласын жіктеу үшін \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} Ньютон бином теоремасын пайдаланыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a-2\right)^{2} формуласын жіктеу үшін \left(p-q\right)^{2}=p^{2}-2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(a+2\right)^{2} формуласын жіктеу үшін \left(p+q\right)^{2}=p^{2}+2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
a^{2}-4a+4 мәнін a^{2}+4a+4 мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз және ұқсас мүшелерді біріктіріңіз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-8a^{2} және 4a^{2} мәндерін қоссаңыз, -4a^{2} мәні шығады.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\left(2-a^{2}\right)^{2} формуласын жіктеу үшін \left(p-q\right)^{2}=p^{2}-2pq+q^{2} Ньютон бином теоремасын пайдаланыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
Бір санның дәрежесін басқа дәрежеге көтеру үшін, дәреже көрсеткіштерін көбейтіңіз. 4 көрсеткішін алу үшін, 2 және 2 мәндерін көбейтіңіз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4-4a^{2}+a^{4} теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
12 мәнін алу үшін, 16 мәнінен 4 мәнін алып тастаңыз.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-4a^{2} және 4a^{2} мәндерін қоссаңыз, 0 мәні шығады.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
a^{4} және -a^{4} мәндерін қоссаңыз, 0 мәні шығады.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{3} шығару үшін, \frac{1}{36} және 12 сандарын көбейтіңіз.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{3} мәнін a^{3}-6a^{2}b+12ab^{2}-8b^{3} мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
ab мәнін \frac{11}{3}b-a мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{11}{3}ab^{2}-ba^{2} теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4ab^{2} және -\frac{11}{3}ab^{2} мәндерін қоссаңыз, \frac{1}{3}ab^{2} мәні шығады.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-2a^{2}b және ba^{2} мәндерін қоссаңыз, -a^{2}b мәні шығады.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
\frac{1}{3}a-b мәнін b^{2}+a^{2} мәніне көбейту үшін, дистрибутивтілік сипатын пайдаланыңыз.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2} теңдеуінің қарсы мәнін табу үшін, әр мүшенің қарсы мәнін табыңыз.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2} және -\frac{1}{3}ab^{2} мәндерін қоссаңыз, 0 мәні шығады.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
\frac{1}{3}a^{3} және -\frac{1}{3}a^{3} мәндерін қоссаңыз, 0 мәні шығады.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
-\frac{8}{3}b^{3} және b^{3} мәндерін қоссаңыз, -\frac{5}{3}b^{3} мәні шығады.
-\frac{5}{3}b^{3}
-a^{2}b және ba^{2} мәндерін қоссаңыз, 0 мәні шығады.