მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{5}+5x^{4}+7x^{3}-x^{2}-8x-4=0
გამოსახულების მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
±4,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-4 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{4}+6x^{3}+13x^{2}+12x+4=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{5}+5x^{4}+7x^{3}-x^{2}-8x-4 x-1-ზე x^{4}+6x^{3}+13x^{2}+12x+4-ის მისაღებად. შედეგის მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
±4,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს4 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=-1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{3}+5x^{2}+8x+4=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{4}+6x^{3}+13x^{2}+12x+4 x+1-ზე x^{3}+5x^{2}+8x+4-ის მისაღებად. შედეგის მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
±4,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს4 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=-1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{2}+4x+4=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{3}+5x^{2}+8x+4 x+1-ზე x^{2}+4x+4-ის მისაღებად. შედეგის მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
x=\frac{-4±\sqrt{4^{2}-4\times 1\times 4}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 4 b-თვის და 4 c-თვის კვადრატულ ფორმულაში.
x=\frac{-4±0}{2}
შეასრულეთ გამოთვლები.
x=-2
ამონახსბები იგივეა.
\left(x-1\right)\left(x+1\right)^{2}\left(x+2\right)^{2}
გადაწერეთ მამრავლებად დაშლილი გამოსახულება მიღებული ფესვების გამოყენებით.