მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{2}+2x+6-14=0
გამოაკელით 14 ორივე მხარეს.
x^{2}+2x-8=0
გამოაკელით 14 6-ს -8-ის მისაღებად.
a+b=2 ab=-8
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+2x-8 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,8 -2,4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -8.
-1+8=7 -2+4=2
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-2 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 2.
\left(x-2\right)\left(x+4\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=2 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x-2=0 და x+4=0.
x^{2}+2x+6-14=0
გამოაკელით 14 ორივე მხარეს.
x^{2}+2x-8=0
გამოაკელით 14 6-ს -8-ის მისაღებად.
a+b=2 ab=1\left(-8\right)=-8
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx-8. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,8 -2,4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -8.
-1+8=7 -2+4=2
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-2 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 2.
\left(x^{2}-2x\right)+\left(4x-8\right)
ხელახლა დაწერეთ x^{2}+2x-8, როგორც \left(x^{2}-2x\right)+\left(4x-8\right).
x\left(x-2\right)+4\left(x-2\right)
x-ის პირველ, 4-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-2\right)\left(x+4\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-2 დისტრიბუციული თვისების გამოყენებით.
x=2 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x-2=0 და x+4=0.
x^{2}+2x+6=14
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x^{2}+2x+6-14=14-14
გამოაკელით 14 განტოლების ორივე მხარეს.
x^{2}+2x+6-14=0
14-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+2x-8=0
გამოაკელით 14 6-ს.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 2-ით b და -8-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4+32}}{2}
გაამრავლეთ -4-ზე -8.
x=\frac{-2±\sqrt{36}}{2}
მიუმატეთ 4 32-ს.
x=\frac{-2±6}{2}
აიღეთ 36-ის კვადრატული ფესვი.
x=\frac{4}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{2} როცა ± პლიუსია. მიუმატეთ -2 6-ს.
x=2
გაყავით 4 2-ზე.
x=-\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±6}{2} როცა ± მინუსია. გამოაკელით 6 -2-ს.
x=-4
გაყავით -8 2-ზე.
x=2 x=-4
განტოლება ახლა ამოხსნილია.
x^{2}+2x+6=14
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+2x+6-6=14-6
გამოაკელით 6 განტოლების ორივე მხარეს.
x^{2}+2x=14-6
6-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+2x=8
გამოაკელით 6 14-ს.
x^{2}+2x+1^{2}=8+1^{2}
გაყავით 2, x წევრის კოეფიციენტი, 2-ზე, 1-ის მისაღებად. შემდეგ დაამატეთ 1-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+2x+1=8+1
აიყვანეთ კვადრატში 1.
x^{2}+2x+1=9
მიუმატეთ 8 1-ს.
\left(x+1\right)^{2}=9
დაშალეთ მამრავლებად x^{2}+2x+1. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+1=3 x+1=-3
გაამარტივეთ.
x=2 x=-4
გამოაკელით 1 განტოლების ორივე მხარეს.