დიფერენცირება w-ის მიმართ
5w^{4}
შეფასება
w^{5}
გაზიარება
კოპირებულია ბუფერში
w^{-2}\frac{\mathrm{d}}{\mathrm{d}w}(w^{7})+w^{7}\frac{\mathrm{d}}{\mathrm{d}w}(w^{-2})
ნებისმიერი ორი დიფერენცირებული ფუნქციისთვის, ორი ფუნქციის ნამრავლის დერივატივი არის პირველ ფუნქციაზე გამრავლებული მრიცხველის დერივატივი პლუს მეორე ფუნქციაზე გამრავლებული პირველი ფუნქციის დერივატივი.
w^{-2}\times 7w^{7-1}+w^{7}\left(-2\right)w^{-2-1}
პოლინომის დერივატივი არის მისი წევრების დერივატივების ჯამი. ნებისმიერი კონსტანტის დერივატივი არის 0. ax^{n}-ის დერივატივი არის nax^{n-1}.
w^{-2}\times 7w^{6}+w^{7}\left(-2\right)w^{-3}
გაამარტივეთ.
7w^{-2+6}-2w^{7-3}
იმავე ფუძის ჯერადი რიცხვების გადამრავლებისთვის, შეკრიბეთ მათი ექსპონენტები.
7w^{4}-2w^{4}
გაამარტივეთ.
w^{5}
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ -2 და 7 რომ მიიღოთ 5.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}