ამოხსნა t-ისთვის (complex solution)
t=-\sqrt{2}i+1\approx 1-1.414213562i
t=-2
t=1+\sqrt{2}i\approx 1+1.414213562i
ამოხსნა t-ისთვის
t=-2
გაზიარება
კოპირებულია ბუფერში
±6,±3,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს6 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
t=-2
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
t^{2}-2t+3=0
ბეზუს თეორემის მიხედვით, t-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით t^{3}-t+6 t+2-ზე t^{2}-2t+3-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 3}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, -2 b-თვის და 3 c-თვის კვადრატულ ფორმულაში.
t=\frac{2±\sqrt{-8}}{2}
შეასრულეთ გამოთვლები.
t=-\sqrt{2}i+1 t=1+\sqrt{2}i
ამოხსენით განტოლება t^{2}-2t+3=0, როცა ± არის პლუსი და როცა ± არის მინუსი.
t=-2 t=-\sqrt{2}i+1 t=1+\sqrt{2}i
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.
±6,±3,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს6 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
t=-2
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
t^{2}-2t+3=0
ბეზუს თეორემის მიხედვით, t-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით t^{3}-t+6 t+2-ზე t^{2}-2t+3-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 3}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, -2 b-თვის და 3 c-თვის კვადრატულ ფორმულაში.
t=\frac{2±\sqrt{-8}}{2}
შეასრულეთ გამოთვლები.
t\in \emptyset
ვინაიდან უარყოფითი რიცხვის კვადრატული ფესვი არ არის განსაზღვრული რეალურ ველში, ამონახსნი არ არსებობს.
t=-2
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}