მამრავლი
\left(p-5\right)\left(p+4\right)
შეფასება
\left(p-5\right)\left(p+4\right)
ვიქტორინა
Polynomial
p ^ { 2 } - p - 20
გაზიარება
კოპირებულია ბუფერში
a+b=-1 ab=1\left(-20\right)=-20
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც p^{2}+ap+bp-20. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-20 2,-10 4,-5
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -20.
1-20=-19 2-10=-8 4-5=-1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-5 b=4
ამონახსნი არის წყვილი, რომლის ჯამია -1.
\left(p^{2}-5p\right)+\left(4p-20\right)
ხელახლა დაწერეთ p^{2}-p-20, როგორც \left(p^{2}-5p\right)+\left(4p-20\right).
p\left(p-5\right)+4\left(p-5\right)
p-ის პირველ, 4-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(p-5\right)\left(p+4\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი p-5 დისტრიბუციული თვისების გამოყენებით.
p^{2}-p-20=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
p=\frac{-\left(-1\right)±\sqrt{1-4\left(-20\right)}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
p=\frac{-\left(-1\right)±\sqrt{1+80}}{2}
გაამრავლეთ -4-ზე -20.
p=\frac{-\left(-1\right)±\sqrt{81}}{2}
მიუმატეთ 1 80-ს.
p=\frac{-\left(-1\right)±9}{2}
აიღეთ 81-ის კვადრატული ფესვი.
p=\frac{1±9}{2}
-1-ის საპირისპიროა 1.
p=\frac{10}{2}
ახლა ამოხსენით განტოლება p=\frac{1±9}{2} როცა ± პლიუსია. მიუმატეთ 1 9-ს.
p=5
გაყავით 10 2-ზე.
p=-\frac{8}{2}
ახლა ამოხსენით განტოლება p=\frac{1±9}{2} როცა ± მინუსია. გამოაკელით 9 1-ს.
p=-4
გაყავით -8 2-ზე.
p^{2}-p-20=\left(p-5\right)\left(p-\left(-4\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 5 x_{1}-ისთვის და -4 x_{2}-ისთვის.
p^{2}-p-20=\left(p-5\right)\left(p+4\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}