მამრავლი
\left(2x-9\right)\left(3x-7\right)
შეფასება
\left(2x-9\right)\left(3x-7\right)
დიაგრამა
ვიქტორინა
Polynomial
6 x ^ { 2 } - 41 x + 63
გაზიარება
კოპირებულია ბუფერში
a+b=-41 ab=6\times 63=378
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც 6x^{2}+ax+bx+63. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-378 -2,-189 -3,-126 -6,-63 -7,-54 -9,-42 -14,-27 -18,-21
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 378.
-1-378=-379 -2-189=-191 -3-126=-129 -6-63=-69 -7-54=-61 -9-42=-51 -14-27=-41 -18-21=-39
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-27 b=-14
ამონახსნი არის წყვილი, რომლის ჯამია -41.
\left(6x^{2}-27x\right)+\left(-14x+63\right)
ხელახლა დაწერეთ 6x^{2}-41x+63, როგორც \left(6x^{2}-27x\right)+\left(-14x+63\right).
3x\left(2x-9\right)-7\left(2x-9\right)
3x-ის პირველ, -7-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(2x-9\right)\left(3x-7\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 2x-9 დისტრიბუციული თვისების გამოყენებით.
6x^{2}-41x+63=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 6\times 63}}{2\times 6}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-41\right)±\sqrt{1681-4\times 6\times 63}}{2\times 6}
აიყვანეთ კვადრატში -41.
x=\frac{-\left(-41\right)±\sqrt{1681-24\times 63}}{2\times 6}
გაამრავლეთ -4-ზე 6.
x=\frac{-\left(-41\right)±\sqrt{1681-1512}}{2\times 6}
გაამრავლეთ -24-ზე 63.
x=\frac{-\left(-41\right)±\sqrt{169}}{2\times 6}
მიუმატეთ 1681 -1512-ს.
x=\frac{-\left(-41\right)±13}{2\times 6}
აიღეთ 169-ის კვადრატული ფესვი.
x=\frac{41±13}{2\times 6}
-41-ის საპირისპიროა 41.
x=\frac{41±13}{12}
გაამრავლეთ 2-ზე 6.
x=\frac{54}{12}
ახლა ამოხსენით განტოლება x=\frac{41±13}{12} როცა ± პლიუსია. მიუმატეთ 41 13-ს.
x=\frac{9}{2}
შეამცირეთ წილადი \frac{54}{12} უმცირეს წევრებამდე გამოკლებით და 6-ის შეკვეცით.
x=\frac{28}{12}
ახლა ამოხსენით განტოლება x=\frac{41±13}{12} როცა ± მინუსია. გამოაკელით 13 41-ს.
x=\frac{7}{3}
შეამცირეთ წილადი \frac{28}{12} უმცირეს წევრებამდე გამოკლებით და 4-ის შეკვეცით.
6x^{2}-41x+63=6\left(x-\frac{9}{2}\right)\left(x-\frac{7}{3}\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით \frac{9}{2} x_{1}-ისთვის და \frac{7}{3} x_{2}-ისთვის.
6x^{2}-41x+63=6\times \frac{2x-9}{2}\left(x-\frac{7}{3}\right)
გამოაკელით x \frac{9}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
6x^{2}-41x+63=6\times \frac{2x-9}{2}\times \frac{3x-7}{3}
გამოაკელით x \frac{7}{3}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
6x^{2}-41x+63=6\times \frac{\left(2x-9\right)\left(3x-7\right)}{2\times 3}
გაამრავლეთ \frac{2x-9}{2}-ზე \frac{3x-7}{3} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
6x^{2}-41x+63=6\times \frac{\left(2x-9\right)\left(3x-7\right)}{6}
გაამრავლეთ 2-ზე 3.
6x^{2}-41x+63=\left(2x-9\right)\left(3x-7\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 6 6 და 6.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}