მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=6 ab=5\times 1=5
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც 5x^{2}+ax+bx+1. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=1 b=5
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(5x^{2}+x\right)+\left(5x+1\right)
ხელახლა დაწერეთ 5x^{2}+6x+1, როგორც \left(5x^{2}+x\right)+\left(5x+1\right).
x\left(5x+1\right)+5x+1
მამრავლებად დაშალეთ x 5x^{2}+x-ში.
\left(5x+1\right)\left(x+1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 5x+1 დისტრიბუციული თვისების გამოყენებით.
x=-\frac{1}{5} x=-1
განტოლების პასუხების მისაღებად ამოხსენით 5x+1=0 და x+1=0.
5x^{2}+6x+1=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-6±\sqrt{6^{2}-4\times 5}}{2\times 5}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 5-ით a, 6-ით b და 1-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 5}}{2\times 5}
აიყვანეთ კვადრატში 6.
x=\frac{-6±\sqrt{36-20}}{2\times 5}
გაამრავლეთ -4-ზე 5.
x=\frac{-6±\sqrt{16}}{2\times 5}
მიუმატეთ 36 -20-ს.
x=\frac{-6±4}{2\times 5}
აიღეთ 16-ის კვადრატული ფესვი.
x=\frac{-6±4}{10}
გაამრავლეთ 2-ზე 5.
x=-\frac{2}{10}
ახლა ამოხსენით განტოლება x=\frac{-6±4}{10} როცა ± პლიუსია. მიუმატეთ -6 4-ს.
x=-\frac{1}{5}
შეამცირეთ წილადი \frac{-2}{10} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
x=-\frac{10}{10}
ახლა ამოხსენით განტოლება x=\frac{-6±4}{10} როცა ± მინუსია. გამოაკელით 4 -6-ს.
x=-1
გაყავით -10 10-ზე.
x=-\frac{1}{5} x=-1
განტოლება ახლა ამოხსნილია.
5x^{2}+6x+1=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
5x^{2}+6x+1-1=-1
გამოაკელით 1 განტოლების ორივე მხარეს.
5x^{2}+6x=-1
1-იდან იმავე რიცხვის გამოკლების შედეგია 0.
\frac{5x^{2}+6x}{5}=-\frac{1}{5}
ორივე მხარე გაყავით 5-ზე.
x^{2}+\frac{6}{5}x=-\frac{1}{5}
5-ზე გაყოფა აუქმებს 5-ზე გამრავლებას.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=-\frac{1}{5}+\left(\frac{3}{5}\right)^{2}
გაყავით \frac{6}{5}, x წევრის კოეფიციენტი, 2-ზე, \frac{3}{5}-ის მისაღებად. შემდეგ დაამატეთ \frac{3}{5}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+\frac{6}{5}x+\frac{9}{25}=-\frac{1}{5}+\frac{9}{25}
აიყვანეთ კვადრატში \frac{3}{5} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{4}{25}
მიუმატეთ -\frac{1}{5} \frac{9}{25}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
\left(x+\frac{3}{5}\right)^{2}=\frac{4}{25}
დაშალეთ მამრავლებად x^{2}+\frac{6}{5}x+\frac{9}{25}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{3}{5}=\frac{2}{5} x+\frac{3}{5}=-\frac{2}{5}
გაამარტივეთ.
x=-\frac{1}{5} x=-1
გამოაკელით \frac{3}{5} განტოლების ორივე მხარეს.