მამრავლი
\left(7x-1\right)^{2}
შეფასება
\left(7x-1\right)^{2}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
a+b=-14 ab=49\times 1=49
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც 49x^{2}+ax+bx+1. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-49 -7,-7
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 49.
-1-49=-50 -7-7=-14
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-7 b=-7
ამონახსნი არის წყვილი, რომლის ჯამია -14.
\left(49x^{2}-7x\right)+\left(-7x+1\right)
ხელახლა დაწერეთ 49x^{2}-14x+1, როგორც \left(49x^{2}-7x\right)+\left(-7x+1\right).
7x\left(7x-1\right)-\left(7x-1\right)
7x-ის პირველ, -1-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(7x-1\right)\left(7x-1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 7x-1 დისტრიბუციული თვისების გამოყენებით.
\left(7x-1\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
factor(49x^{2}-14x+1)
ამ ტრინომს აქვს ტრინომის კვადრატის ფორმა, რომელიც, შესაძლოა, გამრავლებულია საერთო მამრავლზე. ტრინომის კვადრატების დაშლა მამრავლებად შესაძლებელია პირველი და ბოლო წევრის კვადრატული ფესვების გამოთვლის გზით.
gcf(49,-14,1)=1
გამოთვალეთ კოეფიციენტების უდიდესი საერთო მამრავლი.
\sqrt{49x^{2}}=7x
გამოთვალეთ პირველი წევრის კვადრატული ფესვი, 49x^{2}.
\left(7x-1\right)^{2}
ტრინომის კვადრატი არის ბინომის კვადრატი, რომელიც წარმოადგენს პირველი და ბოლო წევრის კვადრატული ფესვების ჯამს ან სხვაობას, ნიშნით, რომელსაც განსაზღვრავს ტრინომის კვადრატის შუა წევრის ნიშანი.
49x^{2}-14x+1=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49}}{2\times 49}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 49}}{2\times 49}
აიყვანეთ კვადრატში -14.
x=\frac{-\left(-14\right)±\sqrt{196-196}}{2\times 49}
გაამრავლეთ -4-ზე 49.
x=\frac{-\left(-14\right)±\sqrt{0}}{2\times 49}
მიუმატეთ 196 -196-ს.
x=\frac{-\left(-14\right)±0}{2\times 49}
აიღეთ 0-ის კვადრატული ფესვი.
x=\frac{14±0}{2\times 49}
-14-ის საპირისპიროა 14.
x=\frac{14±0}{98}
გაამრავლეთ 2-ზე 49.
49x^{2}-14x+1=49\left(x-\frac{1}{7}\right)\left(x-\frac{1}{7}\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით \frac{1}{7} x_{1}-ისთვის და \frac{1}{7} x_{2}-ისთვის.
49x^{2}-14x+1=49\times \frac{7x-1}{7}\left(x-\frac{1}{7}\right)
გამოაკელით x \frac{1}{7}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
49x^{2}-14x+1=49\times \frac{7x-1}{7}\times \frac{7x-1}{7}
გამოაკელით x \frac{1}{7}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
49x^{2}-14x+1=49\times \frac{\left(7x-1\right)\left(7x-1\right)}{7\times 7}
გაამრავლეთ \frac{7x-1}{7}-ზე \frac{7x-1}{7} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
49x^{2}-14x+1=49\times \frac{\left(7x-1\right)\left(7x-1\right)}{49}
გაამრავლეთ 7-ზე 7.
49x^{2}-14x+1=\left(7x-1\right)\left(7x-1\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 49 49 და 49.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}