მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-x^{2}+x=0
დაამატეთ x ორივე მხარეს.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-1\right)}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ -1-ით a, 1-ით b და 0-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\left(-1\right)}
აიღეთ 1^{2}-ის კვადრატული ფესვი.
x=\frac{-1±1}{-2}
გაამრავლეთ 2-ზე -1.
x=\frac{0}{-2}
ახლა ამოხსენით განტოლება x=\frac{-1±1}{-2} როცა ± პლიუსია. მიუმატეთ -1 1-ს.
x=0
გაყავით 0 -2-ზე.
x=-\frac{2}{-2}
ახლა ამოხსენით განტოლება x=\frac{-1±1}{-2} როცა ± მინუსია. გამოაკელით 1 -1-ს.
x=1
გაყავით -2 -2-ზე.
x=0 x=1
განტოლება ახლა ამოხსნილია.
-x^{2}+x=0
დაამატეთ x ორივე მხარეს.
\frac{-x^{2}+x}{-1}=\frac{0}{-1}
ორივე მხარე გაყავით -1-ზე.
x^{2}+\frac{1}{-1}x=\frac{0}{-1}
-1-ზე გაყოფა აუქმებს -1-ზე გამრავლებას.
x^{2}-x=\frac{0}{-1}
გაყავით 1 -1-ზე.
x^{2}-x=0
გაყავით 0 -1-ზე.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
გაყავით -1, x წევრის კოეფიციენტი, 2-ზე, -\frac{1}{2}-ის მისაღებად. შემდეგ დაამატეთ -\frac{1}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
აიყვანეთ კვადრატში -\frac{1}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
დაშალეთ მამრავლებად x^{2}-x+\frac{1}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
გაამარტივეთ.
x=1 x=0
მიუმატეთ \frac{1}{2} განტოლების ორივე მხარეს.