მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-x^{2}+5x+24
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=5 ab=-24=-24
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც -x^{2}+ax+bx+24. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,24 -2,12 -3,8 -4,6
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=8 b=-3
ამონახსნი არის წყვილი, რომლის ჯამია 5.
\left(-x^{2}+8x\right)+\left(-3x+24\right)
ხელახლა დაწერეთ -x^{2}+5x+24, როგორც \left(-x^{2}+8x\right)+\left(-3x+24\right).
-x\left(x-8\right)-3\left(x-8\right)
-x-ის პირველ, -3-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-8\right)\left(-x-3\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-8 დისტრიბუციული თვისების გამოყენებით.
-x^{2}+5x+24=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 24}}{2\left(-1\right)}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 24}}{2\left(-1\right)}
აიყვანეთ კვადრატში 5.
x=\frac{-5±\sqrt{25+4\times 24}}{2\left(-1\right)}
გაამრავლეთ -4-ზე -1.
x=\frac{-5±\sqrt{25+96}}{2\left(-1\right)}
გაამრავლეთ 4-ზე 24.
x=\frac{-5±\sqrt{121}}{2\left(-1\right)}
მიუმატეთ 25 96-ს.
x=\frac{-5±11}{2\left(-1\right)}
აიღეთ 121-ის კვადრატული ფესვი.
x=\frac{-5±11}{-2}
გაამრავლეთ 2-ზე -1.
x=\frac{6}{-2}
ახლა ამოხსენით განტოლება x=\frac{-5±11}{-2} როცა ± პლიუსია. მიუმატეთ -5 11-ს.
x=-3
გაყავით 6 -2-ზე.
x=-\frac{16}{-2}
ახლა ამოხსენით განტოლება x=\frac{-5±11}{-2} როცა ± მინუსია. გამოაკელით 11 -5-ს.
x=8
გაყავით -16 -2-ზე.
-x^{2}+5x+24=-\left(x-\left(-3\right)\right)\left(x-8\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით -3 x_{1}-ისთვის და 8 x_{2}-ისთვის.
-x^{2}+5x+24=-\left(x+3\right)\left(x-8\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.