მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
მამრავლი
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\frac{\frac{25}{40}+\frac{16}{40}}{\frac{3\times 12+5}{12}}\times \frac{1\times 2+1}{2}\times 2
8-ისა და 5-ის უმცირესი საერთო მამრავლი არის 40. გადაიყვანეთ \frac{5}{8} და \frac{2}{5} წილადებად, რომელთა მნიშვნელია 40.
\frac{\frac{25+16}{40}}{\frac{3\times 12+5}{12}}\times \frac{1\times 2+1}{2}\times 2
რადგან \frac{25}{40}-სა და \frac{16}{40}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{\frac{41}{40}}{\frac{3\times 12+5}{12}}\times \frac{1\times 2+1}{2}\times 2
შეკრიბეთ 25 და 16, რათა მიიღოთ 41.
\frac{\frac{41}{40}}{\frac{36+5}{12}}\times \frac{1\times 2+1}{2}\times 2
გადაამრავლეთ 3 და 12, რათა მიიღოთ 36.
\frac{\frac{41}{40}}{\frac{41}{12}}\times \frac{1\times 2+1}{2}\times 2
შეკრიბეთ 36 და 5, რათა მიიღოთ 41.
\frac{41}{40}\times \frac{12}{41}\times \frac{1\times 2+1}{2}\times 2
გაყავით \frac{41}{40} \frac{41}{12}-ზე \frac{41}{40}-ის გამრავლებით \frac{41}{12}-ის შექცეულ სიდიდეზე.
\frac{41\times 12}{40\times 41}\times \frac{1\times 2+1}{2}\times 2
გაამრავლეთ \frac{41}{40}-ზე \frac{12}{41}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{12}{40}\times \frac{1\times 2+1}{2}\times 2
გააბათილეთ 41 როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{3}{10}\times \frac{1\times 2+1}{2}\times 2
შეამცირეთ წილადი \frac{12}{40} უმცირეს წევრებამდე გამოკლებით და 4-ის შეკვეცით.
\frac{3}{10}\times \frac{2+1}{2}\times 2
გადაამრავლეთ 1 და 2, რათა მიიღოთ 2.
\frac{3}{10}\times \frac{3}{2}\times 2
შეკრიბეთ 2 და 1, რათა მიიღოთ 3.
\frac{3\times 3}{10\times 2}\times 2
გაამრავლეთ \frac{3}{10}-ზე \frac{3}{2}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{9}{20}\times 2
განახორციელეთ გამრავლება წილადში \frac{3\times 3}{10\times 2}.
\frac{9\times 2}{20}
გამოხატეთ \frac{9}{20}\times 2 ერთიანი წილადის სახით.
\frac{18}{20}
გადაამრავლეთ 9 და 2, რათა მიიღოთ 18.
\frac{9}{10}
შეამცირეთ წილადი \frac{18}{20} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.