მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{4}+7x^{2}-8=0
გამოსახულების მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
±8,±4,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-8 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{3}+x^{2}+8x+8=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{4}+7x^{2}-8 x-1-ზე x^{3}+x^{2}+8x+8-ის მისაღებად. შედეგის მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
±8,±4,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს8 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=-1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{2}+8=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{3}+x^{2}+8x+8 x+1-ზე x^{2}+8-ის მისაღებად. შედეგის მამრავლებად დასაშლელად, ამოხსენით განტოლება, სადაც იგი უდრის 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 8}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 0 b-თვის და 8 c-თვის კვადრატულ ფორმულაში.
x=\frac{0±\sqrt{-32}}{2}
შეასრულეთ გამოთვლები.
x^{2}+8
მრავალწევრი x^{2}+8 არ იშლება მამრავლებად, რადგან მას არ აქვს რაციონალური ფესვები.
\left(x-1\right)\left(x+1\right)\left(x^{2}+8\right)
გადაწერეთ მამრავლებად დაშლილი გამოსახულება მიღებული ფესვების გამოყენებით.