მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=-12 ab=1\times 36=36
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx+36. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-6 b=-6
ამონახსნი არის წყვილი, რომლის ჯამია -12.
\left(x^{2}-6x\right)+\left(-6x+36\right)
ხელახლა დაწერეთ x^{2}-12x+36, როგორც \left(x^{2}-6x\right)+\left(-6x+36\right).
x\left(x-6\right)-6\left(x-6\right)
x-ის პირველ, -6-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-6\right)\left(x-6\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-6 დისტრიბუციული თვისების გამოყენებით.
\left(x-6\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
factor(x^{2}-12x+36)
ამ ტრინომს აქვს ტრინომის კვადრატის ფორმა, რომელიც, შესაძლოა, გამრავლებულია საერთო მამრავლზე. ტრინომის კვადრატების დაშლა მამრავლებად შესაძლებელია პირველი და ბოლო წევრის კვადრატული ფესვების გამოთვლის გზით.
\sqrt{36}=6
გამოთვალეთ ბოლო წევრის კვადრატული ფესვი, 36.
\left(x-6\right)^{2}
ტრინომის კვადრატი არის ბინომის კვადრატი, რომელიც წარმოადგენს პირველი და ბოლო წევრის კვადრატული ფესვების ჯამს ან სხვაობას, ნიშნით, რომელსაც განსაზღვრავს ტრინომის კვადრატის შუა წევრის ნიშანი.
x^{2}-12x+36=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 36}}{2}
აიყვანეთ კვადრატში -12.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2}
გაამრავლეთ -4-ზე 36.
x=\frac{-\left(-12\right)±\sqrt{0}}{2}
მიუმატეთ 144 -144-ს.
x=\frac{-\left(-12\right)±0}{2}
აიღეთ 0-ის კვადრატული ფესვი.
x=\frac{12±0}{2}
-12-ის საპირისპიროა 12.
x^{2}-12x+36=\left(x-6\right)\left(x-6\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 6 x_{1}-ისთვის და 6 x_{2}-ისთვის.