ამოხსნა x-ისთვის
x=-26
x=25
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
a+b=1 ab=-650
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+x-650 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -650.
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-25 b=26
ამონახსნი არის წყვილი, რომლის ჯამია 1.
\left(x-25\right)\left(x+26\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=25 x=-26
განტოლების პასუხების მისაღებად ამოხსენით x-25=0 და x+26=0.
a+b=1 ab=1\left(-650\right)=-650
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx-650. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,650 -2,325 -5,130 -10,65 -13,50 -25,26
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -650.
-1+650=649 -2+325=323 -5+130=125 -10+65=55 -13+50=37 -25+26=1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-25 b=26
ამონახსნი არის წყვილი, რომლის ჯამია 1.
\left(x^{2}-25x\right)+\left(26x-650\right)
ხელახლა დაწერეთ x^{2}+x-650, როგორც \left(x^{2}-25x\right)+\left(26x-650\right).
x\left(x-25\right)+26\left(x-25\right)
x-ის პირველ, 26-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-25\right)\left(x+26\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-25 დისტრიბუციული თვისების გამოყენებით.
x=25 x=-26
განტოლების პასუხების მისაღებად ამოხსენით x-25=0 და x+26=0.
x^{2}+x-650=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-1±\sqrt{1^{2}-4\left(-650\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 1-ით b და -650-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-650\right)}}{2}
აიყვანეთ კვადრატში 1.
x=\frac{-1±\sqrt{1+2600}}{2}
გაამრავლეთ -4-ზე -650.
x=\frac{-1±\sqrt{2601}}{2}
მიუმატეთ 1 2600-ს.
x=\frac{-1±51}{2}
აიღეთ 2601-ის კვადრატული ფესვი.
x=\frac{50}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±51}{2} როცა ± პლიუსია. მიუმატეთ -1 51-ს.
x=25
გაყავით 50 2-ზე.
x=-\frac{52}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±51}{2} როცა ± მინუსია. გამოაკელით 51 -1-ს.
x=-26
გაყავით -52 2-ზე.
x=25 x=-26
განტოლება ახლა ამოხსნილია.
x^{2}+x-650=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+x-650-\left(-650\right)=-\left(-650\right)
მიუმატეთ 650 განტოლების ორივე მხარეს.
x^{2}+x=-\left(-650\right)
-650-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+x=650
გამოაკელით -650 0-ს.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=650+\left(\frac{1}{2}\right)^{2}
გაყავით 1, x წევრის კოეფიციენტი, 2-ზე, \frac{1}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{1}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+x+\frac{1}{4}=650+\frac{1}{4}
აიყვანეთ კვადრატში \frac{1}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+x+\frac{1}{4}=\frac{2601}{4}
მიუმატეთ 650 \frac{1}{4}-ს.
\left(x+\frac{1}{2}\right)^{2}=\frac{2601}{4}
დაშალეთ მამრავლებად x^{2}+x+\frac{1}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{2601}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{1}{2}=\frac{51}{2} x+\frac{1}{2}=-\frac{51}{2}
გაამარტივეთ.
x=25 x=-26
გამოაკელით \frac{1}{2} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}