მთავარ კონტენტზე გადასვლა
დიფერენცირება a-ის მიმართ
Tick mark Image
შეფასება
Tick mark Image

გაზიარება

\frac{\mathrm{d}}{\mathrm{d}a}(\sin(a))=\left(\lim_{h\to 0}\frac{\sin(a+h)-\sin(a)}{h}\right)
ფუნქციისთვის f\left(x\right), დერივატივი არის \frac{f\left(x+h\right)-f\left(x\right)}{h}-ის ზღვარი, რადგან h გადადის 0-ში, თუ ზღვარი არსებობს.
\lim_{h\to 0}\frac{\sin(a+h)-\sin(a)}{h}
გამოიყენეთ ჯამის ფორმულა სინუსისთვის.
\lim_{h\to 0}\frac{\sin(a)\left(\cos(h)-1\right)+\cos(a)\sin(h)}{h}
ფრჩხილებს გარეთ გაიტანეთ \sin(a).
\left(\lim_{h\to 0}\sin(a)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(a)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
გადაწერეთ ზღვარი.
\sin(a)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(a)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
გამოიყენეთ ის ფაქტი, რომ a არის კონსტანტა ზღვრების გამოთვლისას, რადგან h გადადის 0-ში.
\sin(a)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(a)
ზღვრული \lim_{a\to 0}\frac{\sin(a)}{a} არის 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
ზღვრული \lim_{h\to 0}\frac{\cos(h)-1}{h}-ის შეფასებისთვის, ჯერ გაამრავლეთ მრიცხველი და მნიშვნელი \cos(h)+1-ზე.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
გაამრავლეთ \cos(h)+1-ზე \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
გამოიყენეთ პითაგორას იგივეობა.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
გადაწერეთ ზღვარი.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
ზღვრული \lim_{a\to 0}\frac{\sin(a)}{a} არის 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
გამოიყენეთ ის ფაქტი, რომ \frac{\sin(h)}{\cos(h)+1} მუდმივია 0-ისას.
\cos(a)
ჩაანაცვლეთ მნიშვნელობა 0 განტოლებაში \sin(a)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(a).