მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x-2y=1
განიხილეთ პირველი განტოლება. გამოაკელით 2y ორივე მხარეს.
2x+5y=11,x-2y=1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+5y=11
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-5y+11
გამოაკელით 5y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-5y+11\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{5}{2}y+\frac{11}{2}
გაამრავლეთ \frac{1}{2}-ზე -5y+11.
-\frac{5}{2}y+\frac{11}{2}-2y=1
ჩაანაცვლეთ \frac{-5y+11}{2}-ით x მეორე განტოლებაში, x-2y=1.
-\frac{9}{2}y+\frac{11}{2}=1
მიუმატეთ -\frac{5y}{2} -2y-ს.
-\frac{9}{2}y=-\frac{9}{2}
გამოაკელით \frac{11}{2} განტოლების ორივე მხარეს.
y=1
განტოლების ორივე მხარე გაყავით -\frac{9}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{-5+11}{2}
ჩაანაცვლეთ 1-ით y აქ: x=-\frac{5}{2}y+\frac{11}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=3
მიუმატეთ \frac{11}{2} -\frac{5}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=3,y=1
სისტემა ახლა ამოხსნილია.
x-2y=1
განიხილეთ პირველი განტოლება. გამოაკელით 2y ორივე მხარეს.
2x+5y=11,x-2y=1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&5\\1&-2\end{matrix}\right))\left(\begin{matrix}2&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-2\end{matrix}\right))\left(\begin{matrix}11\\1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&5\\1&-2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-2\end{matrix}\right))\left(\begin{matrix}11\\1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-2\end{matrix}\right))\left(\begin{matrix}11\\1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-5}&-\frac{5}{2\left(-2\right)-5}\\-\frac{1}{2\left(-2\right)-5}&\frac{2}{2\left(-2\right)-5}\end{matrix}\right)\left(\begin{matrix}11\\1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{5}{9}\\\frac{1}{9}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}11\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 11+\frac{5}{9}\\\frac{1}{9}\times 11-\frac{2}{9}\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=3,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
x-2y=1
განიხილეთ პირველი განტოლება. გამოაკელით 2y ორივე მხარეს.
2x+5y=11,x-2y=1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x+5y=11,2x+2\left(-2\right)y=2
იმისათვის, რომ 2x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
2x+5y=11,2x-4y=2
გაამარტივეთ.
2x-2x+5y+4y=11-2
გამოაკელით 2x-4y=2 2x+5y=11-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
5y+4y=11-2
მიუმატეთ 2x -2x-ს. პირობები 2x და -2x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
9y=11-2
მიუმატეთ 5y 4y-ს.
9y=9
მიუმატეთ 11 -2-ს.
y=1
ორივე მხარე გაყავით 9-ზე.
x-2=1
ჩაანაცვლეთ 1-ით y აქ: x-2y=1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=3
მიუმატეთ 2 განტოლების ორივე მხარეს.
x=3,y=1
სისტემა ახლა ამოხსნილია.