მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

6x+5y=23,4x+y=13
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
6x+5y=23
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
6x=-5y+23
გამოაკელით 5y განტოლების ორივე მხარეს.
x=\frac{1}{6}\left(-5y+23\right)
ორივე მხარე გაყავით 6-ზე.
x=-\frac{5}{6}y+\frac{23}{6}
გაამრავლეთ \frac{1}{6}-ზე -5y+23.
4\left(-\frac{5}{6}y+\frac{23}{6}\right)+y=13
ჩაანაცვლეთ \frac{-5y+23}{6}-ით x მეორე განტოლებაში, 4x+y=13.
-\frac{10}{3}y+\frac{46}{3}+y=13
გაამრავლეთ 4-ზე \frac{-5y+23}{6}.
-\frac{7}{3}y+\frac{46}{3}=13
მიუმატეთ -\frac{10y}{3} y-ს.
-\frac{7}{3}y=-\frac{7}{3}
გამოაკელით \frac{46}{3} განტოლების ორივე მხარეს.
y=1
განტოლების ორივე მხარე გაყავით -\frac{7}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{-5+23}{6}
ჩაანაცვლეთ 1-ით y აქ: x=-\frac{5}{6}y+\frac{23}{6}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=3
მიუმატეთ \frac{23}{6} -\frac{5}{6}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=3,y=1
სისტემა ახლა ამოხსნილია.
6x+5y=23,4x+y=13
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}6&5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}23\\13\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}6&5\\4&1\end{matrix}\right))\left(\begin{matrix}6&5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\4&1\end{matrix}\right))\left(\begin{matrix}23\\13\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}6&5\\4&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\4&1\end{matrix}\right))\left(\begin{matrix}23\\13\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\4&1\end{matrix}\right))\left(\begin{matrix}23\\13\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-5\times 4}&-\frac{5}{6-5\times 4}\\-\frac{4}{6-5\times 4}&\frac{6}{6-5\times 4}\end{matrix}\right)\left(\begin{matrix}23\\13\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{5}{14}\\\frac{2}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}23\\13\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\times 23+\frac{5}{14}\times 13\\\frac{2}{7}\times 23-\frac{3}{7}\times 13\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=3,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
6x+5y=23,4x+y=13
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
4\times 6x+4\times 5y=4\times 23,6\times 4x+6y=6\times 13
იმისათვის, რომ 6x და 4x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 4-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 6-ზე.
24x+20y=92,24x+6y=78
გაამარტივეთ.
24x-24x+20y-6y=92-78
გამოაკელით 24x+6y=78 24x+20y=92-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
20y-6y=92-78
მიუმატეთ 24x -24x-ს. პირობები 24x და -24x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
14y=92-78
მიუმატეთ 20y -6y-ს.
14y=14
მიუმატეთ 92 -78-ს.
y=1
ორივე მხარე გაყავით 14-ზე.
4x+1=13
ჩაანაცვლეთ 1-ით y აქ: 4x+y=13. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
4x=12
გამოაკელით 1 განტოლების ორივე მხარეს.
x=3
ორივე მხარე გაყავით 4-ზე.
x=3,y=1
სისტემა ახლა ამოხსნილია.