ამოხსნა x, y-ისთვის
x = \frac{28}{5} = 5\frac{3}{5} = 5.6
y = \frac{12}{5} = 2\frac{2}{5} = 2.4
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x-3y=4,x+y=8
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x-3y=4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=3y+4
მიუმატეთ 3y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(3y+4\right)
ორივე მხარე გაყავით 2-ზე.
x=\frac{3}{2}y+2
გაამრავლეთ \frac{1}{2}-ზე 3y+4.
\frac{3}{2}y+2+y=8
ჩაანაცვლეთ \frac{3y}{2}+2-ით x მეორე განტოლებაში, x+y=8.
\frac{5}{2}y+2=8
მიუმატეთ \frac{3y}{2} y-ს.
\frac{5}{2}y=6
გამოაკელით 2 განტოლების ორივე მხარეს.
y=\frac{12}{5}
განტოლების ორივე მხარე გაყავით \frac{5}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{3}{2}\times \frac{12}{5}+2
ჩაანაცვლეთ \frac{12}{5}-ით y აქ: x=\frac{3}{2}y+2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{18}{5}+2
გაამრავლეთ \frac{3}{2}-ზე \frac{12}{5} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=\frac{28}{5}
მიუმატეთ 2 \frac{18}{5}-ს.
x=\frac{28}{5},y=\frac{12}{5}
სისტემა ახლა ამოხსნილია.
2x-3y=4,x+y=8
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&-3\\1&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4+\frac{3}{5}\times 8\\-\frac{1}{5}\times 4+\frac{2}{5}\times 8\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{28}{5}\\\frac{12}{5}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{28}{5},y=\frac{12}{5}
ამოიღეთ მატრიცის ელემენტები - x და y.
2x-3y=4,x+y=8
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x-3y=4,2x+2y=2\times 8
იმისათვის, რომ 2x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
2x-3y=4,2x+2y=16
გაამარტივეთ.
2x-2x-3y-2y=4-16
გამოაკელით 2x+2y=16 2x-3y=4-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-3y-2y=4-16
მიუმატეთ 2x -2x-ს. პირობები 2x და -2x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-5y=4-16
მიუმატეთ -3y -2y-ს.
-5y=-12
მიუმატეთ 4 -16-ს.
y=\frac{12}{5}
ორივე მხარე გაყავით -5-ზე.
x+\frac{12}{5}=8
ჩაანაცვლეთ \frac{12}{5}-ით y აქ: x+y=8. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{28}{5}
გამოაკელით \frac{12}{5} განტოლების ორივე მხარეს.
x=\frac{28}{5},y=\frac{12}{5}
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}