მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image
მამრავლი
Tick mark Image

გაზიარება

\left(\frac{1}{3}\right)^{8}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გადაამრავლეთ 4! და 4!, რათა მიიღოთ \left(4!\right)^{2}.
\frac{1}{6561}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ8-ის \frac{1}{3} ხარისხი და მიიღეთ \frac{1}{6561}.
\frac{1}{6561}+\frac{8\times 2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოხატეთ 8\times \frac{2}{3} ერთიანი წილადის სახით.
\frac{1}{6561}+\frac{16}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გადაამრავლეთ 8 და 2, რათა მიიღოთ 16.
\frac{1}{6561}+\frac{16}{3}\times \frac{1}{2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ7-ის \frac{1}{3} ხარისხი და მიიღეთ \frac{1}{2187}.
\frac{1}{6561}+\frac{16\times 1}{3\times 2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გაამრავლეთ \frac{16}{3}-ზე \frac{1}{2187}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{1}{6561}+\frac{16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
განახორციელეთ გამრავლება წილადში \frac{16\times 1}{3\times 2187}.
\frac{1+16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
რადგან \frac{1}{6561}-სა და \frac{16}{6561}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{17}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
შეკრიბეთ 1 და 16, რათა მიიღოთ 17.
\frac{17}{6561}+\frac{40320}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8-ის ფაქტორიალი არის 40320.
\frac{17}{6561}+\frac{40320}{720\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
6-ის ფაქტორიალი არის 720.
\frac{17}{6561}+\frac{40320}{720\times 2}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
2-ის ფაქტორიალი არის 2.
\frac{17}{6561}+\frac{40320}{1440}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გადაამრავლეთ 720 და 2, რათა მიიღოთ 1440.
\frac{17}{6561}+28\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გაყავით 40320 1440-ზე 28-ის მისაღებად.
\frac{17}{6561}+28\times \frac{4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ2-ის \frac{2}{3} ხარისხი და მიიღეთ \frac{4}{9}.
\frac{17}{6561}+\frac{28\times 4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოხატეთ 28\times \frac{4}{9} ერთიანი წილადის სახით.
\frac{17}{6561}+\frac{112}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გადაამრავლეთ 28 და 4, რათა მიიღოთ 112.
\frac{17}{6561}+\frac{112}{9}\times \frac{1}{729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ6-ის \frac{1}{3} ხარისხი და მიიღეთ \frac{1}{729}.
\frac{17}{6561}+\frac{112\times 1}{9\times 729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გაამრავლეთ \frac{112}{9}-ზე \frac{1}{729}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{17}{6561}+\frac{112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
განახორციელეთ გამრავლება წილადში \frac{112\times 1}{9\times 729}.
\frac{17+112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
რადგან \frac{17}{6561}-სა და \frac{112}{6561}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{129}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
შეკრიბეთ 17 და 112, რათა მიიღოთ 129.
\frac{43}{2187}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
შეამცირეთ წილადი \frac{129}{6561} უმცირეს წევრებამდე გამოკლებით და 3-ის შეკვეცით.
\frac{43}{2187}+\frac{40320}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8-ის ფაქტორიალი არის 40320.
\frac{43}{2187}+\frac{40320}{120\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
5-ის ფაქტორიალი არის 120.
\frac{43}{2187}+\frac{40320}{120\times 6}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
3-ის ფაქტორიალი არის 6.
\frac{43}{2187}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გადაამრავლეთ 120 და 6, რათა მიიღოთ 720.
\frac{43}{2187}+56\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გაყავით 40320 720-ზე 56-ის მისაღებად.
\frac{43}{2187}+56\times \frac{8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ3-ის \frac{2}{3} ხარისხი და მიიღეთ \frac{8}{27}.
\frac{43}{2187}+\frac{56\times 8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოხატეთ 56\times \frac{8}{27} ერთიანი წილადის სახით.
\frac{43}{2187}+\frac{448}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გადაამრავლეთ 56 და 8, რათა მიიღოთ 448.
\frac{43}{2187}+\frac{448}{27}\times \frac{1}{243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ5-ის \frac{1}{3} ხარისხი და მიიღეთ \frac{1}{243}.
\frac{43}{2187}+\frac{448\times 1}{27\times 243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გაამრავლეთ \frac{448}{27}-ზე \frac{1}{243}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{43}{2187}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
განახორციელეთ გამრავლება წილადში \frac{448\times 1}{27\times 243}.
\frac{129}{6561}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
2187-ისა და 6561-ის უმცირესი საერთო მამრავლი არის 6561. გადაიყვანეთ \frac{43}{2187} და \frac{448}{6561} წილადებად, რომელთა მნიშვნელია 6561.
\frac{129+448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
რადგან \frac{129}{6561}-სა და \frac{448}{6561}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{577}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
შეკრიბეთ 129 და 448, რათა მიიღოთ 577.
\frac{577}{6561}+\frac{40320}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8-ის ფაქტორიალი არის 40320.
\frac{577}{6561}+\frac{40320}{24^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
4-ის ფაქტორიალი არის 24.
\frac{577}{6561}+\frac{40320}{576}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ2-ის 24 ხარისხი და მიიღეთ 576.
\frac{577}{6561}+70\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გაყავით 40320 576-ზე 70-ის მისაღებად.
\frac{577}{6561}+70\times \frac{16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ4-ის \frac{2}{3} ხარისხი და მიიღეთ \frac{16}{81}.
\frac{577}{6561}+\frac{70\times 16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოხატეთ 70\times \frac{16}{81} ერთიანი წილადის სახით.
\frac{577}{6561}+\frac{1120}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გადაამრავლეთ 70 და 16, რათა მიიღოთ 1120.
\frac{577}{6561}+\frac{1120}{81}\times \frac{1}{81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ4-ის \frac{1}{3} ხარისხი და მიიღეთ \frac{1}{81}.
\frac{577}{6561}+\frac{1120\times 1}{81\times 81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გაამრავლეთ \frac{1120}{81}-ზე \frac{1}{81}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{577}{6561}+\frac{1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
განახორციელეთ გამრავლება წილადში \frac{1120\times 1}{81\times 81}.
\frac{577+1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
რადგან \frac{577}{6561}-სა და \frac{1120}{6561}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{1697}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
შეკრიბეთ 577 და 1120, რათა მიიღოთ 1697.
\frac{1697}{6561}+\frac{40320}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8-ის ფაქტორიალი არის 40320.
\frac{1697}{6561}+\frac{40320}{6\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
3-ის ფაქტორიალი არის 6.
\frac{1697}{6561}+\frac{40320}{6\times 120}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
5-ის ფაქტორიალი არის 120.
\frac{1697}{6561}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გადაამრავლეთ 6 და 120, რათა მიიღოთ 720.
\frac{1697}{6561}+56\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
გაყავით 40320 720-ზე 56-ის მისაღებად.
\frac{1697}{6561}+56\times \frac{32}{243}\times \left(\frac{1}{3}\right)^{3}
გამოთვალეთ5-ის \frac{2}{3} ხარისხი და მიიღეთ \frac{32}{243}.
\frac{1697}{6561}+\frac{56\times 32}{243}\times \left(\frac{1}{3}\right)^{3}
გამოხატეთ 56\times \frac{32}{243} ერთიანი წილადის სახით.
\frac{1697}{6561}+\frac{1792}{243}\times \left(\frac{1}{3}\right)^{3}
გადაამრავლეთ 56 და 32, რათა მიიღოთ 1792.
\frac{1697}{6561}+\frac{1792}{243}\times \frac{1}{27}
გამოთვალეთ3-ის \frac{1}{3} ხარისხი და მიიღეთ \frac{1}{27}.
\frac{1697}{6561}+\frac{1792\times 1}{243\times 27}
გაამრავლეთ \frac{1792}{243}-ზე \frac{1}{27}-ჯერ მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით.
\frac{1697}{6561}+\frac{1792}{6561}
განახორციელეთ გამრავლება წილადში \frac{1792\times 1}{243\times 27}.
\frac{1697+1792}{6561}
რადგან \frac{1697}{6561}-სა და \frac{1792}{6561}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{3489}{6561}
შეკრიბეთ 1697 და 1792, რათა მიიღოთ 3489.
\frac{1163}{2187}
შეამცირეთ წილადი \frac{3489}{6561} უმცირეს წევრებამდე გამოკლებით და 3-ის შეკვეცით.