მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x+7-y=0
განიხილეთ პირველი განტოლება. გამოაკელით y ორივე მხარეს.
x-y=-7
გამოაკელით 7 ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
x-y=-7,3x+4y=0
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x-y=-7
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=y-7
მიუმატეთ y განტოლების ორივე მხარეს.
3\left(y-7\right)+4y=0
ჩაანაცვლეთ y-7-ით x მეორე განტოლებაში, 3x+4y=0.
3y-21+4y=0
გაამრავლეთ 3-ზე y-7.
7y-21=0
მიუმატეთ 3y 4y-ს.
7y=21
მიუმატეთ 21 განტოლების ორივე მხარეს.
y=3
ორივე მხარე გაყავით 7-ზე.
x=3-7
ჩაანაცვლეთ 3-ით y აქ: x=y-7. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-4
მიუმატეთ -7 3-ს.
x=-4,y=3
სისტემა ახლა ამოხსნილია.
x+7-y=0
განიხილეთ პირველი განტოლება. გამოაკელით y ორივე მხარეს.
x-y=-7
გამოაკელით 7 ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
x-y=-7,3x+4y=0
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\0\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}1&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}-7\\0\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-1\\3&4\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}-7\\0\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&4\end{matrix}\right))\left(\begin{matrix}-7\\0\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-3\right)}&-\frac{-1}{4-\left(-3\right)}\\-\frac{3}{4-\left(-3\right)}&\frac{1}{4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-7\\0\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&\frac{1}{7}\\-\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-7\\0\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\left(-7\right)\\-\frac{3}{7}\left(-7\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-4,y=3
ამოიღეთ მატრიცის ელემენტები - x და y.
x+7-y=0
განიხილეთ პირველი განტოლება. გამოაკელით y ორივე მხარეს.
x-y=-7
გამოაკელით 7 ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
x-y=-7,3x+4y=0
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x+3\left(-1\right)y=3\left(-7\right),3x+4y=0
იმისათვის, რომ x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
3x-3y=-21,3x+4y=0
გაამარტივეთ.
3x-3x-3y-4y=-21
გამოაკელით 3x+4y=0 3x-3y=-21-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-3y-4y=-21
მიუმატეთ 3x -3x-ს. პირობები 3x და -3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-7y=-21
მიუმატეთ -3y -4y-ს.
y=3
ორივე მხარე გაყავით -7-ზე.
3x+4\times 3=0
ჩაანაცვლეთ 3-ით y აქ: 3x+4y=0. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x+12=0
გაამრავლეთ 4-ზე 3.
3x=-12
გამოაკელით 12 განტოლების ორივე მხარეს.
x=-4
ორივე მხარე გაყავით 3-ზე.
x=-4,y=3
სისტემა ახლა ამოხსნილია.