მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

9x-4y=11,x+4y=19
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
9x-4y=11
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
9x=4y+11
მიუმატეთ 4y განტოლების ორივე მხარეს.
x=\frac{1}{9}\left(4y+11\right)
ორივე მხარე გაყავით 9-ზე.
x=\frac{4}{9}y+\frac{11}{9}
გაამრავლეთ \frac{1}{9}-ზე 4y+11.
\frac{4}{9}y+\frac{11}{9}+4y=19
ჩაანაცვლეთ \frac{4y+11}{9}-ით x მეორე განტოლებაში, x+4y=19.
\frac{40}{9}y+\frac{11}{9}=19
მიუმატეთ \frac{4y}{9} 4y-ს.
\frac{40}{9}y=\frac{160}{9}
გამოაკელით \frac{11}{9} განტოლების ორივე მხარეს.
y=4
განტოლების ორივე მხარე გაყავით \frac{40}{9}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{4}{9}\times 4+\frac{11}{9}
ჩაანაცვლეთ 4-ით y აქ: x=\frac{4}{9}y+\frac{11}{9}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{16+11}{9}
გაამრავლეთ \frac{4}{9}-ზე 4.
x=3
მიუმატეთ \frac{11}{9} \frac{16}{9}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=3,y=4
სისტემა ახლა ამოხსნილია.
9x-4y=11,x+4y=19
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}9&-4\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\19\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}9&-4\\1&4\end{matrix}\right))\left(\begin{matrix}9&-4\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\1&4\end{matrix}\right))\left(\begin{matrix}11\\19\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}9&-4\\1&4\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\1&4\end{matrix}\right))\left(\begin{matrix}11\\19\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\1&4\end{matrix}\right))\left(\begin{matrix}11\\19\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9\times 4-\left(-4\right)}&-\frac{-4}{9\times 4-\left(-4\right)}\\-\frac{1}{9\times 4-\left(-4\right)}&\frac{9}{9\times 4-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}11\\19\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\-\frac{1}{40}&\frac{9}{40}\end{matrix}\right)\left(\begin{matrix}11\\19\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 11+\frac{1}{10}\times 19\\-\frac{1}{40}\times 11+\frac{9}{40}\times 19\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=3,y=4
ამოიღეთ მატრიცის ელემენტები - x და y.
9x-4y=11,x+4y=19
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
9x-4y=11,9x+9\times 4y=9\times 19
იმისათვის, რომ 9x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 9-ზე.
9x-4y=11,9x+36y=171
გაამარტივეთ.
9x-9x-4y-36y=11-171
გამოაკელით 9x+36y=171 9x-4y=11-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-4y-36y=11-171
მიუმატეთ 9x -9x-ს. პირობები 9x და -9x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-40y=11-171
მიუმატეთ -4y -36y-ს.
-40y=-160
მიუმატეთ 11 -171-ს.
y=4
ორივე მხარე გაყავით -40-ზე.
x+4\times 4=19
ჩაანაცვლეთ 4-ით y აქ: x+4y=19. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x+16=19
გაამრავლეთ 4-ზე 4.
x=3
გამოაკელით 16 განტოლების ორივე მხარეს.
x=3,y=4
სისტემა ახლა ამოხსნილია.